ترغب بنشر مسار تعليمي؟ اضغط هنا

Indium as a high cooling power nuclear refrigerant for quantum nanoelectronics

59   0   0.0 ( 0 )
 نشر من قبل Attila Geresdi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The frontiers of quantum electronics have been linked to the discovery of new refrigeration methods since the discovery of superconductivity at a temperature around $4,$K, enabled by the liquefaction of helium. Since then, the advances in cryogenics led to discoveries such as the quantum Hall effect and new technologies like superconducting and semiconductor quantum bits. Presently, nanoelectronic devices typically reach electron temperatures around $10,$mK to $100,$mK by commercially available dilution refrigerators. However, cooling electrons via the encompassing lattice vibrations, or phonons, becomes inefficient at low temperatures. Further progress towards lower temperatures requires new cooling methods for electrons on the nanoscale, such as direct cooling with nuclear spins, which themselves can be brought to microkelvin temperatures by adiabatic demagnetization. Here, we introduce indium as a nuclear refrigerant for nanoelectronics and demonstrate that solely on-chip cooling of electrons is possible down to $3.2pm0.1,$mK, limited by the heat leak via the electrical connections of the device.

قيم البحث

اقرأ أيضاً

Fragile quantum effects such as single electron charging in quantum dots or macroscopic coherent tunneling in superconducting junctions are the basis of modern quantum technologies. These phenomena can only be observed in devices where the characteri stic spacing between energy levels exceeds the thermal energy, $k_textrm{B}T$, demanding effective refrigeration techniques for nanoscale electronic devices. Commercially available dilution refrigerators have enabled typical electron temperatures in the $10$ to $100,$mK regime, however indirect cooling of nanodevices becomes inefficient due to stray radiofrequency heating and weak thermal coupling of electrons to the device substrate. Here we report on passing the millikelvin barrier for a nanoelectronic device. Using a combination of on-chip and off-chip nuclear refrigeration, we reach an ultimate electron temperature of $T_textrm{e}=421pm35,mu$K and a hold time exceeding $85,$hours below $700,mu$K measured by a self-calibrated Coulomb-blockade thermometer.
429 - Gorky Shaw 2016
We present a Scanning Hall Probe Microscope operating in ambient conditions. One of the unique features of this microscope is the use of the same stepper motors for both sample positioning as well as scanning, which makes it possible to have a large scan range (few mm) in x and y directions, with a scan resolution of 0.1 $mu$m. Protocols have been implemented to enable scanning at different heights from the sample surface. The z range is 35 mm. Microstructured Hall probes of size 1-5 $mu$m have been developed. A minimum probe-sample distance textless{} 2 $mu$m has been obtained by the combination of new Hall probes and probe-sample distance regulation using a tuning fork based force detection technique. The system is also capable of recording local B(z) profiles. We discuss the application of the microscope for the study of micro-magnet arrays being developed for applications in micro-systems. * [email protected].; Present address:
We present the development of the first ultrafast transmission electron microscope (UTEM) driven by localized photoemission from a field emitter cathode. We describe the implementation of the instrument, the photoemitter concept and the quantitative electron beam parameters achieved. Establishing a new source for ultrafast TEM, the Gottingen UTEM employs nano-localized linear photoemission from a Schottky emitter, which enables operation with freely tunable temporal structure, from continuous wave to femtosecond pulsed mode. Using this emission mechanism, we achieve record pulse properties in ultrafast electron microscopy of 9 {AA} focused beam diameter, 200 fs pulse duration and 0.6 eV energy width. We illustrate the possibility to conduct ultrafast imaging, diffraction, holography and spectroscopy with this instrument and also discuss opportunities to harness quantum coherent interactions between intense laser fields and free electron beams.
Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, as the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity and quantum criticality, often require refrig eration down to very low temperatures. Currently, cryogenic refrigerators with $^3$He gas are widely used for cooling below 1 Kelvin. However, usage of the gas is being increasingly difficult due to the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. Here, we show that a new type of refrigerant, super-heavy electron metal, YbCo$_2$Zn$_{20}$, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. A number of advantages includes much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb$_{1-x}$Sc$_x$Co$_2$Zn$_{20}$ by partial Sc substitution with $xsim$0.19. The substitution induces chemical pressure which drives the materials close to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures enabling final temperatures well below 100 mK. Such performance has up to now been restricted to insulators. Since nearly a century the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for the cryogen-free refrigeration.
The recently predicted topological magnetoelectric effect and the response to an electric charge that mimics an induced mirror magnetic monopole are fundamental attributes of topological states of matter with broken time reversal symmetry. Using a SQ UID-on-tip, acting simultaneously as a tunable scanning electric charge and as ultrasensitive nanoscale magnetometer, we induce and directly image the microscopic currents generating the magnetic monopole response in a graphene quantum Hall electron system. We find a rich and complex nonlinear behavior governed by coexistence of topological and nontopological equilibrium currents that is not captured by the monopole models. Furthermore, by utilizing a tuning fork that induces nanoscale vibrations of the SQUID-on-tip, we directly image the equilibrium currents of individual quantum Hall edge states for the first time. We reveal that the edge states that are commonly assumed to carry only a chiral downstream current, in fact carry a pair of counterpropagating currents, in which the topological downstream current in the incompressible region is always counterbalanced by heretofore unobserved nontopological upstream current flowing in the adjacent compressible region. The intricate patterns of the counterpropagating equilibrium-state orbital currents provide new insights into the microscopic origins of the topological and nontopological charge and energy flow in quantum Hall systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا