ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale imaging of equilibrium quantum Hall edge currents and of the magnetic monopole response in graphene

107   0   0.0 ( 0 )
 نشر من قبل Aviram Uri
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recently predicted topological magnetoelectric effect and the response to an electric charge that mimics an induced mirror magnetic monopole are fundamental attributes of topological states of matter with broken time reversal symmetry. Using a SQUID-on-tip, acting simultaneously as a tunable scanning electric charge and as ultrasensitive nanoscale magnetometer, we induce and directly image the microscopic currents generating the magnetic monopole response in a graphene quantum Hall electron system. We find a rich and complex nonlinear behavior governed by coexistence of topological and nontopological equilibrium currents that is not captured by the monopole models. Furthermore, by utilizing a tuning fork that induces nanoscale vibrations of the SQUID-on-tip, we directly image the equilibrium currents of individual quantum Hall edge states for the first time. We reveal that the edge states that are commonly assumed to carry only a chiral downstream current, in fact carry a pair of counterpropagating currents, in which the topological downstream current in the incompressible region is always counterbalanced by heretofore unobserved nontopological upstream current flowing in the adjacent compressible region. The intricate patterns of the counterpropagating equilibrium-state orbital currents provide new insights into the microscopic origins of the topological and nontopological charge and energy flow in quantum Hall systems.

قيم البحث

اقرأ أيضاً

Topological edge states exhibit dissipationless transport and electrically-driven topological phase transitions, making them ideal for next-generation transistors that are not constrained by Moores law. Nevertheless, their dispersion has never been p robed and is often assumed to be simply linear, without any rigorous justification. Here we determine the non-linear electrical response of topological edge states in the ballistic regime and demonstrate the way this response ascertains the presence of symmetry breaking terms in the edge dispersion, such as deviations from non-linearity and tilted spin quantization axes. The non-linear response stems from discontinuities in the band occupation on either side of a Zeeman gap, and its direction is set by the spin orientation with respect to the Zeeman field. We determine the edge dispersion for several classes of topological materials and discuss experimental measurement.
429 - Gorky Shaw 2016
We present a Scanning Hall Probe Microscope operating in ambient conditions. One of the unique features of this microscope is the use of the same stepper motors for both sample positioning as well as scanning, which makes it possible to have a large scan range (few mm) in x and y directions, with a scan resolution of 0.1 $mu$m. Protocols have been implemented to enable scanning at different heights from the sample surface. The z range is 35 mm. Microstructured Hall probes of size 1-5 $mu$m have been developed. A minimum probe-sample distance textless{} 2 $mu$m has been obtained by the combination of new Hall probes and probe-sample distance regulation using a tuning fork based force detection technique. The system is also capable of recording local B(z) profiles. We discuss the application of the microscope for the study of micro-magnet arrays being developed for applications in micro-systems. * [email protected].; Present address:
We observe that the illumination of unbiased graphene in the quantum Hall regime with polarized terahertz laser radiation results in a direct edge current. This photocurrent is caused by an imbalance of persistent edge currents, which are driven out of thermal equilibrium by indirect transitions within the chiral edge channel. The direction of the edge photocurrent is determined by the polarity of the external magnetic field, while its magnitude depends on the radiation polarization. The microscopic theory developed in this paper describes well the experimental data.
Energy dissipation is a fundamental process governing the dynamics of physical, chemical, and biological systems. It is also one of the main characteristics distinguishing quantum and classical phenomena. In condensed matter physics, in particular, s cattering mechanisms, loss of quantum information, or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Despite its vital importance the microscopic behavior of a system is usually not formulated in terms of dissipation because the latter is not a readily measureable quantity on the microscale. Although nanoscale thermometry is gaining much recent interest, the existing thermal imaging methods lack the necessary sensitivity and are unsuitable for low temperature operation required for study of quantum systems. Here we report a superconducting quantum interference nano-thermometer device with sub 50 nm diameter that resides at the apex of a sharp pipette and provides scanning cryogenic thermal sensing with four orders of magnitude improved thermal sensitivity of below 1 {mu}K/Hz1/2. The non-contact non-invasive thermometry allows thermal imaging of very low nanoscale energy dissipation down to the fundamental Landauer limit of 40 fW for continuous readout of a single qubit at 1 GHz at 4.2 K. These advances enable observation of dissipation due to single electron charging of individual quantum dots in carbon nanotubes and reveal a novel dissipation mechanism due to resonant localized states in hBN encapsulated graphene, opening the door to direct imaging of nanoscale dissipation processes in quantum matter.
The quantum Hall (QH) effect, a topologically non-trivial quantum phase, expanded and brought into focus the concept of topological order in physics. The topologically protected quantum Hall edge states are of crucial importance to the QH effect but have been measured with limited success. The QH edge states in graphene take on an even richer role as graphene is distinguished by its four-fold degenerate zero energy Landau level (zLL), where the symmetry is broken by electron interactions on top of lattice-scale potentials but has eluded spatial measurements. In this report, we map the quantum Hall broken-symmetry edge states comprising the graphene zLL at integer filling factors of $ u=0,pm 1$ across the quantum Hall edge boundary using atomic force microscopy (AFM). Measurements of the chemical potential resolve the energies of the four-fold degenerate zLL as a function of magnetic field and show the interplay of the moire superlattice potential of the graphene/boron nitride system and spin/valley symmetry-breaking effects in large magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا