ترغب بنشر مسار تعليمي؟ اضغط هنا

Model Inconsistent but Correlated Noise: Multi-view Subspace Learning with Regularized Mixture of Gaussians

50   0   0.0 ( 0 )
 نشر من قبل Deyu Meng
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Multi-view subspace learning (MSL) aims to find a low-dimensional subspace of the data obtained from multiple views. Different from single view case, MSL should take both common and specific knowledge among different views into consideration. To enhance the robustness of model, the complexity, non-consistency and similarity of noise in multi-view data should be fully taken into consideration. Most current MSL methods only assume a simple Gaussian or Laplacian distribution for the noise while neglect the complex noise configurations in each view and noise correlations among different views of practical data. To this issue, this work initiates a MSL method by encoding the multi-view-shared and single-view-specific noise knowledge in data. Specifically, we model data noise in each view as a separated Mixture of Gaussians (MoG), which can fit a wider range of complex noise types than conventional Gaussian/Laplacian. Furthermore, we link all single-view-noise as a whole by regularizing them by a common MoG component, encoding the shared noise knowledge among them. Such regularization component can be formulated as a concise KL-divergence regularization term under a MAP framework, leading to good interpretation of our model and simple EM-based solving strategy to the problem. Experimental results substantiate the superiority of our method.

قيم البحث

اقرأ أيضاً

Deep multi-view clustering methods have achieved remarkable performance. However, all of them failed to consider the difficulty labels (uncertainty of ground-truth for training samples) over multi-view samples, which may result into a nonideal cluste ring network for getting stuck into poor local optima during training process; worse still, the difficulty labels from multi-view samples are always inconsistent, such fact makes it even more challenging to handle. In this paper, we propose a novel Deep Adversarial Inconsistent Cognitive Sampling (DAICS) method for multi-view progressive subspace clustering. A multiview binary classification (easy or difficult) loss and a feature similarity loss are proposed to jointly learn a binary classifier and a deep consistent feature embedding network, throughout an adversarial minimax game over difficulty labels of multiview consistent samples. We develop a multi-view cognitive sampling strategy to select the input samples from easy to difficult for multi-view clustering network training. However, the distributions of easy and difficult samples are mixed together, hence not trivial to achieve the goal. To resolve it, we define a sampling probability with theoretical guarantee. Based on that, a golden section mechanism is further designed to generate a sample set boundary to progressively select the samples with varied difficulty labels via a gate unit, which is utilized to jointly learn a multi-view common progressive subspace and clustering network for more efficient clustering. Experimental results on four real-world datasets demonstrate the superiority of DAICS over the state-of-the-art methods.
Graph-based subspace clustering methods have exhibited promising performance. However, they still suffer some of these drawbacks: encounter the expensive time overhead, fail in exploring the explicit clusters, and cannot generalize to unseen data poi nts. In this work, we propose a scalable graph learning framework, seeking to address the above three challenges simultaneously. Specifically, it is based on the ideas of anchor points and bipartite graph. Rather than building a $ntimes n$ graph, where $n$ is the number of samples, we construct a bipartite graph to depict the relationship between samples and anchor points. Meanwhile, a connectivity constraint is employed to ensure that the connected components indicate clusters directly. We further establish the connection between our method and the K-means clustering. Moreover, a model to process multi-view data is also proposed, which is linear scaled with respect to $n$. Extensive experiments demonstrate the efficiency and effectiveness of our approach with respect to many state-of-the-art clustering methods.
Multi-typed objects Multi-view Multi-instance Multi-label Learning (M4L) deals with interconnected multi-typed objects (or bags) that are made of diverse instances, represented with heterogeneous feature views and annotated with a set of non-exclusiv e but semantically related labels. M4L is more general and powerful than the typical Multi-view Multi-instance Multi-label Learning (M3L), which only accommodates single-typed bags and lacks the power to jointly model the naturally interconnected multi-typed objects in the physical world. To combat with this novel and challenging learning task, we develop a joint matrix factorization based solution (M4L-JMF). Particularly, M4L-JMF firstly encodes the diverse attributes and multiple inter(intra)-associations among multi-typed bags into respective data matrices, and then jointly factorizes these matrices into low-rank ones to explore the composite latent representation of each bag and its instances (if any). In addition, it incorporates a dispatch and aggregation term to distribute the labels of bags to individual instances and reversely aggregate the labels of instances to their affiliated bags in a coherent manner. Experimental results on benchmark datasets show that M4L-JMF achieves significantly better results than simple adaptions of existing M3L solutions on this novel problem.
Many applications of machine learning, such as human health research, involve processing private or sensitive information. Privacy concerns may impose significant hurdles to collaboration in scenarios where there are multiple sites holding data and t he goal is to estimate properties jointly across all datasets. Differentially private decentralized algorithms can provide strong privacy guarantees. However, the accuracy of the joint estimates may be poor when the datasets at each site are small. This paper proposes a new framework, Correlation Assisted Private Estimation (CAPE), for designing privacy-preserving decentralized algorithms with better accuracy guarantees in an honest-but-curious model. CAPE can be used in conjunction with the functional mechanism for statistical and machine learning optimization problems. A tighter characterization of the functional mechanism is provided that allows CAPE to achieve the same performance as a centralized algorithm in the decentralized setting using all datasets. Empirical results on regression and neural network problems for both synthetic and real datasets show that differentially private methods can be competitive with non-private algorithms in many scenarios of interest.
The information bottleneck principle provides an information-theoretic method for representation learning, by training an encoder to retain all information which is relevant for predicting the label while minimizing the amount of other, excess inform ation in the representation. The original formulation, however, requires labeled data to identify the superfluous information. In this work, we extend this ability to the multi-view unsupervised setting, where two views of the same underlying entity are provided but the label is unknown. This enables us to identify superfluous information as that not shared by both views. A theoretical analysis leads to the definition of a new multi-view model that produces state-of-the-art results on the Sketchy dataset and label-limite

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا