ترغب بنشر مسار تعليمي؟ اضغط هنا

$ADE$ bundles over $ADE$ singular surfaces and flag varieties of $ADE$ type

90   0   0.0 ( 0 )
 نشر من قبل Yunxia Chen
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Based on the Brieskorn-Slodowy-Grothendieck diagram, we write the holomorphic structures (or filtrations) of the ADE Lie algebra bundles over the corresponding type ADE flag varieties, over the cotangent bundles of these flag varieties, and over the corresponding type $ADE$ singular surfaces. The main tool is the cohomology of line bundles over flag varieties and their cotangent bundles.



قيم البحث

اقرأ أيضاً

We define a class of surfaces corresponding to the ADE root lattices and construct compactifications of their moduli spaces as quotients of projective varieties for Coxeter fans, generalizing Losev-Manin spaces of curves. We exhibit modular families over these moduli spaces, which extend to families of stable pairs over the compactifications. One simple application is a geometric compactification of the moduli of rational elliptic surfaces that is a finite quotient of a projective toric variety.
The double triangle algebra(DTA) associated to an ADE graph is considered. A description of its bialgebra structure based on a reconstruction approach is given. This approach takes as initial data the representation theory of the DTA as given by Ocne anus cell calculus. It is also proved that the resulting DTA has the structure of a weak *-Hopf algebra. As an illustrative example, the case of the graph A3 is described in detail.
We prove an explicit inverse Chevalley formula in the equivariant $K$-theory of semi-infinite flag manifolds of simply-laced type. By an inverse Chevalley formula, we mean a formula for the product of an equivariant scalar with a Schubert class, expr essed as a $mathbb{Z}[q^{pm 1}]$-linear combination of Schubert classes twisted by equivariant line bundles. Our formula applies to arbitrary Schubert classes in semi-infinite flag manifolds of simply-laced type and equivariant scalars $e^{lambda}$, where $lambda$ is an arbitrary minuscule weight. By a result of Stembridge, our formula completely determines the inverse Chevalley formula for arbitrary weights in simply-laced type, except for type $E_8$. The combinatorics of our formula is governed by the quantum Bruhat graph, and the proof is based on a limit from the double affine Hecke algebra. As such, our formula also provides an explicit determination of all nonsymmetric $q$-Toda operators for minuscule weights in ADE type.
We derive Seiberg-Witten like equations encoding the dynamics of N=2 ADE quiver gauge theories in presence of a non-trivial Omega-background along a two dimensional plane. The epsilon-deformed prepotential and the chiral correlators of the gauge theo ry are extracted from difference equations that can be thought as a non-commutative (or quantum) version of the Seiberg-Witten curves for the quiver.
We study Artin-Tits braid groups $mathbb{B}_W$ of type ADE via the action of $mathbb{B}_W$ on the homotopy category $mathcal{K}$ of graded projective zigzag modules (which categorifies the action of the Weyl group $W$ on the root lattice). Following Brav-Thomas, we define a metric on $mathbb{B}_W$ induced by the canonical $t$-structure on $mathcal{K}$, and prove that this metric on $mathbb{B}_W$ agrees with the word-length metric in the canonical generators of the standard positive monoid $mathbb{B}_W^+$ of the braid group. We also define, for each choice of a Coxeter element $c$ in $W$, a baric structure on $mathcal{K}$. We use these baric structures to define metrics on the braid group, and we identify these metrics with the word-length metrics in the Birman-Ko-Lee/Bessis dual generators of the associated dual positive monoid $mathbb{B}_{W.c}^vee$. As consequences, we give new proofs that the standard and dual positive monoids inject into the group, give linear-algebraic solutions to the membership problem in the standard and dual positive monoids, and provide new proofs of the faithfulness of the action of $mathbb{B}_W$ on $mathcal{K}$. Finally, we use the compatibility of the baric and $t$-structures on $mathcal{K}$ to prove a conjecture of Digne and Gobet regarding the canonical word-length of the dual simple generators of ADE braid groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا