ﻻ يوجد ملخص باللغة العربية
Sequence-to-Sequence (Seq2Seq) models have witnessed a notable success in generating natural conversational exchanges. Notwithstanding the syntactically well-formed responses generated by these neural network models, they are prone to be acontextual, short and generic. In this work, we introduce a Topical Hierarchical Recurrent Encoder Decoder (THRED), a novel, fully data-driven, multi-turn response generation system intended to produce contextual and topic-aware responses. Our model is built upon the basic Seq2Seq model by augmenting it with a hierarchical joint attention mechanism that incorporates topical concepts and previous interactions into the response generation. To train our model, we provide a clean and high-quality conversational dataset mined from Reddit comments. We evaluate THRED on two novel automated metrics, dubbed Semantic Similarity and Response Echo Index, as well as with human evaluation. Our experiments demonstrate that the proposed model is able to generate more diverse and contextually relevant responses compared to the strong baselines.
Conventional chatbots focus on two-party response generation, which simplifies the real dialogue scene. In this paper, we strive toward a novel task of Response Generation on Multi-Party Chatbot (RGMPC), where the generated responses heavily rely on
Non-autoregressive translation (NAT) significantly accelerates the inference process by predicting the entire target sequence. However, due to the lack of target dependency modelling in the decoder, the conditional generation process heavily depends
A key trait of daily conversations between individuals is the ability to express empathy towards others, and exploring ways to implement empathy is a crucial step towards human-like dialogue systems. Previous approaches on this topic mainly focus on
Context-aware machine translation models are designed to leverage contextual information, but often fail to do so. As a result, they inaccurately disambiguate pronouns and polysemous words that require context for resolution. In this paper, we ask se
Existing natural language processing systems are vulnerable to noisy inputs resulting from misspellings. On the contrary, humans can easily infer the corresponding correct words from their misspellings and surrounding context. Inspired by this, we ad