ﻻ يوجد ملخص باللغة العربية
When answering a question, people often draw upon their rich world knowledge in addition to the particular context. Recent work has focused primarily on answering questions given some relevant document or context, and required very little general background. To investigate question answering with prior knowledge, we present CommonsenseQA: a challenging new dataset for commonsense question answering. To capture common sense beyond associations, we extract from ConceptNet (Speer et al., 2017) multiple target concepts that have the same semantic relation to a single source concept. Crowd-workers are asked to author multiple-choice questions that mention the source concept and discriminate in turn between each of the target concepts. This encourages workers to create questions with complex semantics that often require prior knowledge. We create 12,247 questions through this procedure and demonstrate the difficulty of our task with a large number of strong baselines. Our best baseline is based on BERT-large (Devlin et al., 2018) and obtains 56% accuracy, well below human performance, which is 89%.
Recent developments in pre-trained neural language modeling have led to leaps in accuracy on commonsense question-answering benchmarks. However, there is increasing concern that models overfit to specific tasks, without learning to utilize external k
Commonsense question answering (QA) requires a model to grasp commonsense and factual knowledge to answer questions about world events. Many prior methods couple language modeling with knowledge graphs (KG). However, although a KG contains rich struc
Large pre-trained language models (PLMs) have led to great success on various commonsense question answering (QA) tasks in an end-to-end fashion. However, little attention has been paid to what commonsense knowledge is needed to deeply characterize t
A fundamental ability of humans is to utilize commonsense knowledge in language understanding and question answering. In recent years, many knowledge-enhanced Commonsense Question Answering (CQA) approaches have been proposed. However, it remains unc
Commonsense knowledge about object properties, human behavior and general concepts is crucial for robust AI applications. However, automatic acquisition of this knowledge is challenging because of sparseness and bias in online sources. This paper pre