ﻻ يوجد ملخص باللغة العربية
In this paper we have examined hyperbolicity and relative hyperbolicity of $Gamma_n := mathsf{Out}(G_n)$ , where $G_n = A_1*...*A_n$, is a finite free product and each $A_i$ is a finite group. We have used the $mathsf{Out}(G_n)$ action on the Guirardel-Levitt deformation space, to find a virtual generating set and prove quasi isometric embedding of a large class of subgroups. We have used ideas from works of Mosher-Handel and Alibegovic to prove non-distortion. We have used these subgroups to prove that $Gamma_n$ is thick for higher complexities. Thickness was developed by Behrstock-Druc{t}u-Mosher and thickness implies that the groups are non-relatively hyperbolic.
S. Gersten announced an algorithm that takes as input two finite sequences $vec K=(K_1,dots, K_N)$ and $vec K=(K_1,dots, K_N)$ of conjugacy classes of finitely generated subgroups of $F_n$ and outputs: (1) $mathsf{YES}$ or $mathsf{NO}$ depending on
This is the second part of a two part work in which we prove that for every finitely generated subgroup $Gamma < mathsf{Out}(F_n)$, either $Gamma$ is virtually abelian or its second bounded cohomology $H^2_b(Gamma;mathbb{R})$ contains an embedding of
We prove that $Out(F_N)$ is boundary amenable. This also holds more generally for $Out(G)$, where $G$ is either a toral relatively hyperbolic group or a finitely generated right-angled Artin group. As a consequence, all these groups satisfy the Novikov conjecture on higher signatures.
For any finite collection $f_i$ of fully irreducible automorphisms of the free group $F_n$ we construct a connected $delta$-hyperbolic $Out(F_n)$-complex in which each $f_i$ has positive translation length.
We show that if a f.g. group $G$ has a non-elementary WPD action on a hyperbolic metric space $X$, then the number of $G$-conjugacy classes of $X$-loxodromic elements of $G$ coming from a ball of radius $R$ in the Cayley graph of $G$ grows exponentia