ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests of General Relativity with GW170817

218   0   0.0 ( 0 )
 نشر من قبل LVC Publications
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of strong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polarization content of the gravitational wave signal is studied. The results of all tests performed here show good agreement with GR.



قيم البحث

اقرأ أيضاً

The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnants mass and spin, as determined from the low-frequency (inspiral) and high-frequency (post-inspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasi-normal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parameterized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a $90%$-confidence lower bound of $10^{13}$ km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.
We review the physics of atoms and clocks in weakly curved spacetime, and how each may be used to test the Einstein Equivalence Principle (EEP) in the context of the minimal Standard Model Extension (mSME). We find that conventional clocks and matter -wave interferometers are sensitive to the same kinds of EEP-violating physics. We show that the analogy between matter-waves and clocks remains true for systems beyond the semiclassical limit. We quantitatively compare the experimentally observable signals for EEP violation in matter-wave experiments. We find that comparisons of $^{6}$Li and $^{7}$Li are particularly sensitive to such anomalies. Tests involving unstable isotopes, for which matter-wave interferometers are well suited, may further improve the sensitivity of EEP tests.
Gravitational wave astronomy has tremendous potential for studying extreme astrophysical phenomena and exploring fundamental physics. The waves produced by binary black hole mergers will provide a pristine environment in which to study strong field, dynamical gravity. Extracting detailed information about these systems requires accurate theoretical models of the gravitational wave signals. If gravity is not described by General Relativity, analyses that are based on waveforms derived from Einsteins field equations could result in parameter biases and a loss of detection efficiency. A new class of parameterized post-Einsteinian (ppE) waveforms has been proposed to cover this eventuality. Here we apply the ppE approach to simulated data from a network of advanced ground based interferometers (aLIGO/aVirgo) and from a future spaced based interferometer (LISA). Bayesian inference and model selection are used to investigate parameter biases, and to determine the level at which departures from general relativity can be detected. We find that in some cases the parameter biases from assuming the wrong theory can be severe. We also find that gravitational wave observations will beat the existing bounds on deviations from general relativity derived from the orbital decay of binary pulsars by a large margin across a wide swath of parameter space.
Gravitational wave observations of compact binary coalescences provide precision probes of strong-field gravity. There is thus now a standard set of null tests of general relativity (GR) applied to LIGO-Virgo detections and many more such tests propo sed. However, the relation between all these tests is not yet well understood. We start to investigate this by applying a set of standard tests to simulated observations of binary black holes in GR and with phenomenological deviations from GR. The phenomenological deviations include self-consistent modifications to the energy flux in an effective-one-body (EOB) model, the deviations used in the second post-Newtonian (2PN) TIGER and FTA parameterized tests, and the dispersive propagation due to a massive graviton. We consider four types of tests: residuals, inspiral-merger-ringdown consistency, parameterized (TIGER and FTA), and modified dispersion relation. We also check the consistency of the unmodeled reconstruction of the waveforms with the waveform recovered using GR templates. These tests are applied to simulated observations similar to GW150914 with both large and small deviations from GR and similar to GW170608 just with small deviations from GR. We find that while very large deviations from GR are picked up with high significance by almost all tests, more moderate deviations are picked up by only a few tests, and some deviations are not recognized as GR violations by any test at the moderate signal-to-noise ratios we consider. Moreover, the tests that identify various deviations with high significance are not necessarily the expected ones. We also find that the 2PN (1PN) TIGER and FTA tests recover much smaller deviations than the true values in the modified EOB (massive graviton) case. Additionally, we find that of the GR deviations we consider, the residuals test is only able to detect extreme deviations from GR. (Abridged)
We consider the observation of stellar-mass black holes binaries with the Laser Interferometer Space Antenna (LISA). Preliminary results based on Fisher information matrix analyses have suggested that gravitational waves from those sources could be v ery sensitive to possible deviations from the theory of general relativity and from the strong equivalence principle during the low-frequency binary inspiral. We perform a full Markov Chain Monte Carlo Bayesian analysis to quantify the sensitivity of these signals to two phenomenological modifications of general relativity, namely a putative gravitational dipole emission and a non-zero mass for the graviton, properly accounting for the detectors response. Moreover, we consider a scenario where those sources could be observed also with Earth-based detectors, which should measure the coalescence time with precision better than $1 {rm ms}$. This constraint on the coalescence time further improves the bounds that we can set on those phenomenological deviations from general relativity. We show that tests of dipole radiation and the gravitons mass should improve respectively by seven and half an order(s) of magnitude over current bounds. Finally, we discuss under which conditions one may claim the detection of a modification to general relativity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا