ترغب بنشر مسار تعليمي؟ اضغط هنا

Tests of general relativity with GW150914

116   0   0.0 ( 0 )
 نشر من قبل LVC Publications
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnants mass and spin, as determined from the low-frequency (inspiral) and high-frequency (post-inspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasi-normal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parameterized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a $90%$-confidence lower bound of $10^{13}$ km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.



قيم البحث

اقرأ أيضاً

We produce the first astrophysically-relevant numerical binary black hole gravitational waveform in a higher-curvature theory of gravity beyond general relativity. We simulate a system with parameters consistent with GW150914, the first LIGO detectio n, in order-reduced dynamical Chern-Simons gravity, a theory with motivations in string theory and loop quantum gravity. We present results for the leading-order corrections to the merger and ringdown waveforms, as well as the ringdown quasi-normal mode spectrum. We estimate that such corrections may be discriminated in detections with signal to noise ratio $gtrsim 180-240$, with the precise value depending on the dimension of the GR waveform family used in data analysis.
The recent discovery by Advanced LIGO and Advanced Virgo of a gravitational wave signal from a binary neutron star inspiral has enabled tests of general relativity (GR) with this new type of source. This source, for the first time, permits tests of s trong-field dynamics of compact binaries in presence of matter. In this paper, we place constraints on the dipole radiation and possible deviations from GR in the post-Newtonian coefficients that govern the inspiral regime. Bounds on modified dispersion of gravitational waves are obtained; in combination with information from the observed electromagnetic counterpart we can also constrain effects due to large extra dimensions. Finally, the polarization content of the gravitational wave signal is studied. The results of all tests performed here show good agreement with GR.
We review the physics of atoms and clocks in weakly curved spacetime, and how each may be used to test the Einstein Equivalence Principle (EEP) in the context of the minimal Standard Model Extension (mSME). We find that conventional clocks and matter -wave interferometers are sensitive to the same kinds of EEP-violating physics. We show that the analogy between matter-waves and clocks remains true for systems beyond the semiclassical limit. We quantitatively compare the experimentally observable signals for EEP violation in matter-wave experiments. We find that comparisons of $^{6}$Li and $^{7}$Li are particularly sensitive to such anomalies. Tests involving unstable isotopes, for which matter-wave interferometers are well suited, may further improve the sensitivity of EEP tests.
We introduce a novel test of General Relativity in the strong-field regime of a binary black hole coalescence. Combining information coming from Numerical Relativity simulations of coalescing black hole binaries with a Bayesian reconstruction of the gravitational wave signal detected in LIGO-Virgo interferometric data, allows one to test theoretical predictions for the instantaneous gravitational wave frequency measured at the peak of the gravitational wave signal amplitude. We present the construction of such a test and apply it on the first gravitational wave event detected by the LIGO and Virgo Collaborations, GW150914. The $p$-value obtained is $p=0.48$, to be contrasted with an expected value of $p=0.5$, so that no signs of violations from General Relativity were detected.
Gravitational wave astronomy has tremendous potential for studying extreme astrophysical phenomena and exploring fundamental physics. The waves produced by binary black hole mergers will provide a pristine environment in which to study strong field, dynamical gravity. Extracting detailed information about these systems requires accurate theoretical models of the gravitational wave signals. If gravity is not described by General Relativity, analyses that are based on waveforms derived from Einsteins field equations could result in parameter biases and a loss of detection efficiency. A new class of parameterized post-Einsteinian (ppE) waveforms has been proposed to cover this eventuality. Here we apply the ppE approach to simulated data from a network of advanced ground based interferometers (aLIGO/aVirgo) and from a future spaced based interferometer (LISA). Bayesian inference and model selection are used to investigate parameter biases, and to determine the level at which departures from general relativity can be detected. We find that in some cases the parameter biases from assuming the wrong theory can be severe. We also find that gravitational wave observations will beat the existing bounds on deviations from general relativity derived from the orbital decay of binary pulsars by a large margin across a wide swath of parameter space.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا