ﻻ يوجد ملخص باللغة العربية
The simulation of electrical discharges has been attracting a great deal of attention. In such simulations, the electric field computation dominates the computational time. In this paper, we propose a fast tree algorithm that helps to reduce the time complexity from $O(N^2)$ (from using direct summation) to $O(Nlog N)$. The implementation details are discussed and the time complexity is analyzed. A rigorous error estimation shows the error of the tree algorithm decays exponentially with the number of truncation terms and can be controlled adaptively. Numerical examples are presented to validate the accuracy and efficiency of the algorithm.
We present the AMPS algorithm, a finite element solution method that combines principal submatrix updates and Schur complement techniques, well-suited for interactive simulations of deformation and cutting of finite element meshes. Our approach featu
Blockchain has received tremendous attention in non-monetary applications including the Internet of Things (IoT) due to its salient features including decentralization, security, auditability, and anonymity. Most conventional blockchains rely on comp
The advent of a new generation of large-scale galaxy surveys is pushing cosmological numerical simulations in an uncharted territory. The simultaneous requirements of high resolution and very large volume pose serious technical challenges, due to the
Transcriptome assembly from RNA-Seq reads is an active area of bioinformatics research. The ever-declining cost and the increasing depth of RNA-Seq have provided unprecedented opportunities to better identify expressed transcripts. However, the nonli
Semantic equivalences are used in process algebra to capture the notion of similar behaviour, and this paper proposes a semi-quantitative equivalence for a stochastic process algebra developed for biological modelling. We consider abstracting away fr