ﻻ يوجد ملخص باللغة العربية
Real-time monitoring is essential for understanding and eventually precise controlling of the growth of two dimensional transition-metal dichalcogenides (2D TMDCs). However, it is very challenging to carry out such kind of studies on chemical vapor deposition (CVD). Here, we report the first real time $in-situ$ study on the CVD growth of the 2D TMDCs. More specifically, CVD growth of molybdenum disulfide (MoS$_2$) monolayer on sapphire substrates has been monitored $in-situ$ using differential transmittance spectroscopy (DTS). The growth of the MoS$_2$ monolayer can be precisely followed by looking at the evolution of the characteristic optical features. Consequently, a strong correlation between the growth rate of MoS$_2$ monolayer and the temperature distribution in the CVD reactor has been revealed. Our result demonstrates the great potential of the real time $in-situ$ optical spectroscopy for the realization of the precisely controlled growth of 2D semiconductor materials.
The integration of two-dimensional transition metal dichalcogenide crystals (TMDCs) into a dielectric environment is critical for optoelectronic and photonic device applications. Here, we investigate the effects of direct deposition of different diel
Many of the fundamental optical and electronic properties of atomically thin transition metal dichalcogenides are dominated by strong Coulomb interactions between electrons and holes, forming tightly bound atom-like excitons. Here, we directly trace
We study photoluminescence (PL) spectra and exciton dynamics of MoS$_2$ monolayer (ML) grown by the chemical vapor deposition technique. In addition to the usual direct A-exciton line we observe a low-energy line of bound excitons dominating the PL s
We present an ultra-high vacuum scanning tunneling microscopy (STM) study of structural defects in molybdenum disulfide thin films grown on silicon substrates by chemical vapor deposition. A distinctive type of grain boundary periodically arranged in
In this work, we have systematically studied the role of point defects in the recombination time of monolayer MoS$_2$ using time-dependent ab initio non-adiabatic molecular dynamics simulations. Various types of point defects, such as S vacancy, S in