ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct observation of ultrafast exciton formation in monolayer WSe$_2$

103   0   0.0 ( 0 )
 نشر من قبل Philipp Steinleitner
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many of the fundamental optical and electronic properties of atomically thin transition metal dichalcogenides are dominated by strong Coulomb interactions between electrons and holes, forming tightly bound atom-like excitons. Here, we directly trace the ultrafast formation of excitons by monitoring the absolute densities of bound and unbound electron-hole pairs in monolayers of WSe$_2$ following femtosecond non-resonant optical excitation. To this end, phase-locked mid-infrared probe pulses and field-sensitive electro-optic sampling are used to map out the full complex-valued optical conductivity of the non-equilibrium system and to discern the hallmark low-energy responses of bound and unbound pairs. While free charge carriers strongly influence the infrared response immediately after above-bandgap injection, up to 60% of the electron-hole pairs are bound as excitons already on a sub-picosecond timescale, evidencing extremely fast and efficient exciton formation. During the subsequent recombination phase, we still find a large density of free carriers in addition to excitons, indicating a non-equilibrium state of the photoexcited electron-hole system.



قيم البحث

اقرأ أيضاً

Interlayer excitons (IXs) possess a much longer lifetime than intralayer excitons due to the spatial separation of the electrons and holes; hence, they have been pursued to create exciton condensates for decades. The recent emergence of two-dimension al (2D) materials, such as transition metal dichalcogenides (TMDs), and of their van der Waals heterostructures (HSs), in which two different 2D materials are layered together, has created new opportunities to study IXs. Here we present the observation of IX gases within two stacked structures consisting of hBN/WSe$_2$/hBN/p: WSe$_2$/hBN. The IX energy of the two different structures differed by 82 meV due to the different thickness of the hBN spacer layer between the TMD layers. We demonstrate that the lifetime of the IXs is shortened when the temperature and the pump power increase. We attribute this nonlinear behavior to an Auger process.
Monolayer WSe$_2$ hosts a series of exciton Rydberg states denoted by the principal quantum number n = 1, 2, 3, etc. While most research focuses on their absorption properties, their optical emission is also important but much less studied. Here we m easure the photoluminescence from the 1s - 5s exciton Rydberg states in ultraclean monolayer WSe$_2$ encapsulated by boron nitride under magnetic fields from -31 T to 31 T. The exciton Rydberg states exhibit similar Zeeman shifts but distinct diamagnetic shifts from each other. From their luminescence spectra, Zeeman and diamagnetic shifts, we deduce the binding energies, g-factors and radii of the 1s - 4s exciton states. Our results are consistent with theoretical predictions and results from prior magneto-reflection experiments.
The dynamics of exciton formation in transition metal dichalcogenides is difficult to measure experimentally, since many momentum-indirect exciton states are not accessible to optical interband spectroscopy. Here, we combine a tuneable pump, high-har monic probe laser source with a 3D momentum imaging technique to map photoemitted electrons from monolayer WS$_2$. This provides momentum-, energy- and time-resolved access to excited states on an ultrafast timescale. The high temporal resolution of the setup allows us to trace the early-stage exciton dynamics on its intrinsic timescale and observe the formation of a momentum-forbidden dark K$Sigma$ exciton a few tens of femtoseconds after optical excitation. By tuning the excitation energy we manipulate the temporal evolution of the coherent excitonic polarization and observe its influence on the dark exciton formation. The experimental results are in excellent agreement with a fully microscopic theory, resolving the temporal and spectral dynamics of bright and dark excitons in WS$_2$.
268 - Gerd Plechinger , Tobias Korn , 2017
Semiconducting transition metal dichalcogenide monolayers have emerged as promising candidates for future valleytronics-based quantum information technologies. Two distinct momentum-states of tightly-bound electron-hole pairs in these materials can b e deterministically initialized via irradiation with circularly polarized light. Here, we investigate the ultrafast dynamics of such a valley polarization in monolayer tungsten diselenide by means of time-resolved Kerr reflectometry. The observed Kerr signal in our sample stems exclusively from charge-neutral excitons. Our findings support the picture of a fast decay of the valley polarization of bright excitons due to radiative recombination, intra-conduction-band spin-flip transitions, intervalley-scattering processes, and the formation of long-lived valley-polarized dark states.
We report the observation and gate manipulation of intrinsic dark trions in monolayer WSe$_2$. By using ultraclean WSe$_2$ devices encapsulated by boron nitride, we directly resolve the weak photoluminescence of dark trions. The dark trions can be tu ned continuously between negative and positive charged trions with electrostatic gating. We also reveal their spin triplet configuration and distinct valley optical emission by their characteristic Zeeman splitting under magnetic field. The dark trions exhibit large binding energy (14-16 meV). Their lifetime (~1.3 ns) is two orders of magnitude longer than the bright trion lifetime (~10 ps) and can be tuned between 0.4 to 1.3 ns by electrostatic gating. Such robust, optically detectable, and gate tunable dark trions provide a new path to realize electrically controllable trion transport in two-dimensional materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا