ﻻ يوجد ملخص باللغة العربية
We report the possibility to generate tremendous light-field enhancements within shallow nano-trenches made in a high index dielectric material, because of resonant behaviours reminiscent of what we get with sub-wavelength plasmonic cavities. The high quality factors are explained through a modal analysis and can be tuned with appropriate design rules. The thin dielectric void gratings here simulated could be a relevant alternative to plasmon-based devices for chemical sensing, or could be used as efficient wavelength-selective photo-absorbers by taking weakly absorbing materials.
High-index dielectrics can confine light into nano-scale leading to enhanced nonlinear response. However, increased momentum in these media can deteriorate the overlap between different harmonics which hinders efficient nonlinear interaction in wavel
We closely study the local amplifications of visible light on a thin dielectric slab presenting a sub-wavelength array of small, rectangular, bottom-closed holes. The high-quality Fabry-Perot resonances of eigen modes which vertically oscillate, and
In this article, a 2D plasmonic waveguide loaded with all dielectric anisotropic metamaterial, consisting of alternative layers of Si-SiO2, has been theoretically proposed and numerically analyzed. Main characteristics of waveguide i.e. propagation c
We report a novel design of a compact wavelength add-drop multiplexer utilizing dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs). The DLSPPW-based configuration exploits routing properties of directional couplers and filtering abiliti
Besides purely academic interest, giant field enhancement within subwavelength particles at light scattering of a plane electromagnetic wave is important for numerous applications ranging from telecommunications to medicine and biology. In this paper