ﻻ يوجد ملخص باللغة العربية
We derive the asymptotic winding law of a Brownian particle in the plane subjected to a tangential drift due to a point vortex. For winding around a point, the normalized winding angle converges to an inverse Gamma distribution. For winding around a disk, the angle converges to a distribution given by an elliptic theta function. For winding in an annulus, the winding angle is asymptotically Gaussian with a linear drift term. We validate our results with numerical simulations.
The distribution engendered by successive splitting of one point vortex are considered. The process of splitting a vortex in three using a reverse three-point vortex collapse course is analysed in great details and shown to be dissipative. A simple p
Experimentalists use particles as tracers in liquid helium. The intrusive effects of particles on the dynamics of vortices remain poorly understood. We implement a study of how basic well understood vortex states, such as a propagating pair of opposi
The paper identifies families of quasi-stationary initial conditions for infinite Brownian particle systems within a large class and provides a construction of the particle systems themselves started from such initial conditions. Examples of particle systems falling into our framework include Browni
We consider the active Brownian particle (ABP) model for a two-dimensional microswimmer with fixed speed, whose direction of swimming changes according to a Brownian process. The probability density for the swimmer evolves according to a Fokker-Planc
We derive a governing equation for a Kelvin wave supported on a vortex line in a Bose-Einstein condensate, in a rotating cylindrically symmetric parabolic trap. From this solution the Kelvin wave dispersion relation is determined. In the limit of an