ﻻ يوجد ملخص باللغة العربية
Data mining is routinely used to organize ensembles of short temporal observations so as to reconstruct useful, low-dimensional realizations of an underlying dynamical system. In this paper, we use manifold learning to organize unstructured ensembles of observations (trials) of a systems response surface. We have no control over where every trial starts; and during each trial operating conditions are varied by turning agnostic knobs, which change system parameters in a systematic but unknown way. As one (or more) knobs turn we record (possibly partial) observations of the system response. We demonstrate how such partial and disorganized observation ensembles can be integrated into coherent response surfaces whose dimension and parametrization can be systematically recovered in a data-driven fashion. The approach can be justified through the Whitney and Takens embedding theorems, allowing reconstruction of manifolds/attractors through different types of observations. We demonstrate our approach by organizing unstructured observations of response surfaces, including the reconstruction of a cusp bifurcation surface for Hydrogen combustion in a Continuous Stirred Tank Reactor. Finally, we demonstrate how this observation-based reconstruction naturally leads to informative transport maps between input parameter space and output/state variable spaces.
Manifold-learning techniques are routinely used in mining complex spatiotemporal data to extract useful, parsimonious data representations/parametrizations; these are, in turn, useful in nonlinear model identification tasks. We focus here on the case
Gaussian process tomography (GPT) is a method used for obtaining real-time tomographic reconstructions of the plasma emissivity profile in a tokamak, given some model for the underlying physical processes involved. GPT can also be used, thanks to Bay
Data-driven prediction and physics-agnostic machine-learning methods have attracted increased interest in recent years achieving forecast horizons going well beyond those to be expected for chaotic dynamical systems. In a separate strand of research
Time series of observables measured from complex systems do often exhibit non-normal statistics, their statistical distributions (PDFs) are not gaussian and often skewed, with roughly exponential tails. Departure from gaussianity is related to the in
To provide a more accurate description of the driving behaviors in vehicle queues, a namely Markov-Gap cellular automata model is proposed in this paper. It views the variation of the gap between two consequent vehicles as a Markov process whose stat