ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the dusty star-formation in the early Universe using intensity mapping

268   0   0.0 ( 0 )
 نشر من قبل Guilaine Lagache
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Guilaine Lagache




اسأل ChatGPT حول البحث

In the last decade, it has become clear that the dust-enshrouded star formation contributes significantly to early galaxy evolution. Detection of dust is therefore essential in determining the properties of galaxies in the high-redshift universe. This requires observations at the (sub-)millimeter wavelengths. Unfortunately, sensitivity and background confusion of single dish observations on the one hand, and mapping efficiency of interferometers on the other hand, pose unique challenges to observers. One promising route to overcome these difficulties is intensity mapping of fluctuations which exploits the confusion-limited regime and measures the collective light emission from all sources, including unresolved faint galaxies. We discuss in this contribution how 2D and 3D intensity mapping can measure the dusty star formation at high redshift, through the Cosmic Infrared Background (2D) and [CII] fine structure transition (3D) anisotropies.



قيم البحث

اقرأ أيضاً

Galaxies grow inefficiently, with only a few percent of the available gas converted into stars each free-fall time. Feedback processes, such as outflowing winds driven by radiation pressure, supernovae or supermassive black hole accretion, can act to halt star formation if they heat or expel the gas supply. We report a molecular outflow launched from a dust-rich star-forming galaxy at redshift 5.3, one billion years after the Big Bang. The outflow reaches velocities up to 800 km/s relative to the galaxy, is resolved into multiple clumps, and carries mass at a rate within a factor of two of the star formation rate. Our results show that molecular outflows can remove a large fraction of the gas available for star formation from galaxies at high redshift.
134 - Matt J. Jarvis 2014
Radio wavelengths offer the unique possibility of tracing the total star-formation rate in galaxies, both obscured and unobscured. As such, they may provide the most robust measurement of the star-formation history of the Universe. In this chapter we highlight the constraints that the SKA can place on the evolution of the star-formation history of the Universe, the survey area required to overcome sample variance, the spatial resolution requirements, along with the multi-wavelength ancillary data that will play a major role in maximising the scientific promise of the SKA. The required combination of depth and resolution means that a survey to trace the star formation in the Universe should be carried out with a facility that has a resolution of at least ~0.5arcsec, with high sensitivity at < 1 GHz. We also suggest a strategy that will enable new parameter space to be explored as the SKA expands over the coming decade.
It has recently been pointed out that Gaia is capable of detecting a stochastic gravitational wave background in the sensitivity band between the frequency of pulsar timing arrays and LISA. We argue that Gaia and THEIA has great potential for early u niverse cosmology, since such a frequency range is ideal for probing phase transitions in asymmetric dark matter, SIMP and the cosmological QCD transition. Furthermore, there is the potential for detecting primordial black holes in the solar mass range produced during such an early universe transition and distinguish them from those expected from the QCD epoch. Finally, we discuss the potential for Gaia and THEIA to probe topological defects and the ability of Gaia to potentially shed light on the recent NANOGrav results.
Galactic outflows of molecular gas are a common occurrence in galaxies and may represent a mechanism by which galaxies self-regulate their growth, redistributing gas that could otherwise have formed stars. We previously presented the first survey of molecular outflows at z > 4 towards a sample of massive, dusty galaxies. Here we characterize the physical properties of the molecular outflows discovered in our survey. Using low-redshift outflows as a training set, we find agreement at the factor-of-two level between several outflow rate estimates. We find molecular outflow rates 150-800Msun/yr and infer mass loading factors just below unity. Among the high-redshift sources, the molecular mass loading factor shows no strong correlations with any other measured quantity. The outflow energetics are consistent with expectations for momentum-driven winds with star formation as the driving source, with no need for energy-conserving phases. There is no evidence for AGN activity in our sample, and while we cannot rule out deeply-buried AGN, their presence is not required to explain the outflow energetics, in contrast to nearby obscured galaxies with fast outflows. The fraction of the outflowing gas that will escape into the circumgalactic medium (CGM), though highly uncertain, may be as high as 50%. This nevertheless constitutes only a small fraction of the total cool CGM mass based on a comparison to z~2-3 quasar absorption line studies, but could represent >~10% of the CGM metal mass. Our survey offers the first statistical characterization of molecular outflow properties in the very early universe.
We explore how the estimated star formation rate (SFR) of a sample of isolated, massive dusty star-forming galaxies at early cosmic epochs ($1.5 < z < 3.5$) changes when their ultraviolet (UV) to near-infrared (NIR) spectral energy distribution is ex tended to longer wavelengths by adding far-infrared/sub-millimeter data to trace the reprocessed radiation from dust heated by young massive stars. We use large-area surveys with multi-wavelength datasets that include DECam UV-to-optical, VICS82 NIR, Spitzer-IRAC NIR, and Herschel-SPIRE far-infrared/sub-millimeter data. We find that the inclusion of far-infrared/sub-millimeter data leads to SFRs that span $sim$100-3500 $M_{odot} yr^{-1}$ and are higher than the extinction-corrected UV-based SFR by an average factor of $sim$3.5, and by a factor of over 10 in many individual galaxies. Our study demonstrates the importance of far-IR/sub-millimeter data for deriving accurate SFRs in massive dusty galaxies at early epochs, and underscores the need for next-generation far-IR/sub-millimeter facilities with high sensitivity, field of view, and angular resolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا