ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete Weight Distribution and MacWilliams Identities for Asymmetric Quantum Codes

149   0   0.0 ( 0 )
 نشر من قبل Shudi Yang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In 1997, Shor and Laflamme defined the weight enumerators for quantum error-correcting codes and derived a MacWilliams identity. We extend their work by introducing our double weight enumerators and complete weight enumerators. The MacWilliams identities for these enumerators can be obtained similarly. With the help of MacWilliams identities, we obtain various bounds for asymmetric quantum codes.

قيم البحث

اقرأ أيضاً

The concept of asymmetric entanglement-assisted quantum error-correcting code (asymmetric EAQECC) is introduced in this article. Codes of this type take advantage of the asymmetry in quantum errors since phase-shift errors are more probable than qudi t-flip errors. Moreover, they use pre-shared entanglement between encoder and decoder to simplify the theory of quantum error correction and increase the communication capacity. Thus, asymmetric EAQECCs can be constructed from any pair of classical linear codes over an arbitrary field. Their parameters are described and a Gilbert-Varshamov bound is presented. Explicit parameters of asymmetric EAQECCs from BCH codes are computed and examples exceeding the introduced Gilbert-Varshamov bound are shown.
90 - Jihao Fan , Jun Li , Jianxin Wang 2020
In this paper, we present a new construction of asymmetric quantum codes (AQCs) by combining classical concatenated codes (CCs) with tensor product codes (TPCs), called asymmetric quantum concatenated and tensor product codes (AQCTPCs) which have the following three advantages. First, only the outer codes in AQCTPCs need to satisfy the orthogonal constraint in quantum codes, and any classical linear code can be used for the inner, which makes AQCTPCs very easy to construct. Second, most AQCTPCs are highly degenerate, which means they can correct many more errors than their classical TPC counterparts. Consequently, we construct several families of AQCs with better parameters than known results in the literature. Third, AQCTPCs can be efficiently decoded although they are degenerate, provided that the inner and outer codes are efficiently decodable. In particular, we significantly reduce the inner decoding complexity of TPCs from $Omega(n_2a^{n_1})(a>1)$ to $O(n_2)$ by considering error degeneracy, where $n_1$ and $n_2$ are the block length of the inner code and the outer code, respectively. Furthermore, we generalize our concatenation scheme by using the generalized CCs and TPCs correspondingly.
In this paper, the minimum weight distributions (MWDs) of polar codes and concatenated polar codes are exactly enumerated according to the distance property of codewords. We first propose a sphere constraint based enumeration method (SCEM) to analyze the MWD of polar codes with moderate complexity. The SCEM exploits the distance property that all the codewords with the identical Hamming weight are distributed on a spherical shell. Then, based on the SCEM and the Plotkins construction of polar codes, a sphere constraint based recursive enumeration method (SCREM) is proposed to recursively calculate the MWD with a lower complexity. Finally, we propose a parity-check SCEM (PC-SCEM) to analyze the MWD of concatenated polar codes by introducing the parity-check equations of outer codes. Moreover, due to the distance property of codewords, the proposed three methods can exactly enumerate all the codewords belonging to the MWD. The enumeration results show that the SCREM can enumerate the MWD of polar codes with code length up to $2^{14}$ and the PC-SCEM can be used to optimize CRC-polar concatenated codes.
Recently, Galindo et al. introduced the concept of asymmetric entanglement-assisted quantum error-correcting codes (AEAQECCs) from Calderbank-Shor-Steane (CSS) construction. In general, its difficult to determine the required number of maximally enta ngled states of an AEAQECC, which is associated with the dimension of the intersection of the two corresponding linear codes. Two linear codes are said to be a linear l-intersection pair if their intersection has dimension l. In this paper, all possible linear l-intersection pairs of MDS codes are given. As an application, we give a complete characterization of pure MDS AEAQECCs for all possible parameters.
Cyclic codes with two zeros and their dual codes as a practically and theoretically interesting class of linear codes, have been studied for many years. However, the weight distributions of cyclic codes are difficult to determine. From elliptic curve s, this paper determines the weight distributions of dual codes of cyclic codes with two zeros for a few more cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا