ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermodynamic Limit of the Transition Rate of a Crystalline Defect

129   0   0.0 ( 0 )
 نشر من قبل Julian Braun
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider an isolated point defect embedded in a homogeneous crystalline solid. We show that, in the harmonic approximation, a periodic supercell approximation of the formation free energy as well as of the transition rate between two stable configurations converge as the cell size tends to infinity. We characterise the limits and establish sharp convergence rates. Both cases can be reduced to a careful renormalisation analysis of the vibrational entropy difference, which is achieved by identifying an underlying spatial decomposition.



قيم البحث

اقرأ أيضاً

We consider the geometry relaxation of an isolated point defect embedded in a homogeneous crystalline solid, within an atomistic description. We prove a sharp convergence rate for a periodic supercell approximation with respect to uniform convergence of the discrete strains.
In the mean field integrate-and-fire model, the dynamics of a typical neuron within a large network is modeled as a diffusion-jump stochastic process whose jump takes place once the voltage reaches a threshold. In this work, the main goal is to estab lish the convergence relationship between the regularized process and the original one where in the regularized process, the jump mechanism is replaced by a Poisson dynamic, and jump intensity within the classically forbidden domain goes to infinity as the regularization parameter vanishes. On the macroscopic level, the Fokker-Planck equation for the process with random discharges (i.e. Poisson jumps) are defined on the whole space, while the equation for the limit process is on the half space. However, with the iteration scheme, the difficulty due to the domain differences has been greatly mitigated and the convergence for the stochastic process and the firing rates can be established. Moreover, we find a polynomial-order convergence for the distribution by a re-normalization argument in probability theory. Finally, by numerical experiments, we quantitatively explore the rate and the asymptotic behavior of the convergence for both linear and nonlinear models.
In the mean field integrate-and-fire model, the dynamics of a typical neuron within a large network is modeled as a diffusion-jump stochastic process whose jump takes place once the voltage reaches a threshold. In this work, the main goal is to estab lish the convergence relationship between the regularized process and the original one where in the regularized process, the jump mechanism is replaced by a Poisson dynamic, and jump intensity within the classically forbidden domain goes to infinity as the regularization parameter vanishes. On the macroscopic level, the Fokker-Planck equation for the process with random discharges (i.e. Poisson jumps) are defined on the whole space, while the equation for the limit process is on the half space. However, with the iteration scheme, the difficulty due to the domain differences has been greatly mitigated and the convergence for the stochastic process and the firing rates can be established. Moreover, we find a polynomial-order convergence for the distribution by a re-normalization argument in probability theory. Finally, by numerical experiments, we quantitatively explore the rate and the asymptotic behavior of the convergence for both linear and nonlinear models.
We consider systems of diffusion processes (particles) interacting through their ranks (also referred to as rank-based models in the mathematical finance literature). We show that, as the number of particles becomes large, the process of fluctuations of the empirical cumulative distribution functions converges to the solution of a linear parabolic SPDE with additive noise. The coefficients in the limiting SPDE are determined by the hydrodynamic limit of the particle system which, in turn, can be described by the porous medium PDE. The result opens the door to a thorough investigation of large equity markets and investment therein. In the course of the proof we also derive quantitative propagation of chaos estimates for the particle system.
We investigate the topologies of random geometric complexes built over random points sampled on Riemannian manifolds in the so-called thermodynamic regime. We prove the existence of universal limit laws for the topologies; namely, the random normaliz ed counting measure of connected components (counted according to homotopy type) is shown to converge in probability to a deterministic probability measure. Moreover, we show that the support of the deterministic limiting measure equals the set of all homotopy types for Euclidean geometric complexes of the same dimension as the manifold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا