ﻻ يوجد ملخص باللغة العربية
We consider an isolated point defect embedded in a homogeneous crystalline solid. We show that, in the harmonic approximation, a periodic supercell approximation of the formation free energy as well as of the transition rate between two stable configurations converge as the cell size tends to infinity. We characterise the limits and establish sharp convergence rates. Both cases can be reduced to a careful renormalisation analysis of the vibrational entropy difference, which is achieved by identifying an underlying spatial decomposition.
We consider the geometry relaxation of an isolated point defect embedded in a homogeneous crystalline solid, within an atomistic description. We prove a sharp convergence rate for a periodic supercell approximation with respect to uniform convergence of the discrete strains.
In the mean field integrate-and-fire model, the dynamics of a typical neuron within a large network is modeled as a diffusion-jump stochastic process whose jump takes place once the voltage reaches a threshold. In this work, the main goal is to estab
In the mean field integrate-and-fire model, the dynamics of a typical neuron within a large network is modeled as a diffusion-jump stochastic process whose jump takes place once the voltage reaches a threshold. In this work, the main goal is to estab
We consider systems of diffusion processes (particles) interacting through their ranks (also referred to as rank-based models in the mathematical finance literature). We show that, as the number of particles becomes large, the process of fluctuations
We investigate the topologies of random geometric complexes built over random points sampled on Riemannian manifolds in the so-called thermodynamic regime. We prove the existence of universal limit laws for the topologies; namely, the random normaliz