ترغب بنشر مسار تعليمي؟ اضغط هنا

Photoevaporation of Molecular Clouds in Regions of Massive Star Formation as Revealed Through H$_2$ and Br$gamma$ Emission

86   0   0.0 ( 0 )
 نشر من قبل Scott Carlsten
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine new and pre-existing wide-field, continuum-corrected, narrowband images in H$_2$ 1-0 S(1) and Br$gamma$ of three regions of massive star formation: IC 1396, Cygnus OB2, and Carina. These regions contain a variety of globules, pillars, and sheets, so we can quantify how the spatial profiles of emission lines behave in photodissociation regions (PDRs) that differ in their radiation fields and geometries. We have measured 450 spatial profiles of H$_2$ and Br$gamma$ along interfaces between HII regions and PDRs. Br$gamma$ traces photoevaporative flows from the PDRs, and this emission declines more rapidly with distance as the radius of curvature of the interface decreases, in agreement with models. As noted previously, H$_2$ emission peaks deeper into the cloud relative to Br$gamma$, where the molecular gas absorbs far-UV radiation from nearby O-stars. Although PDRs in IC 1396, Cygnus OB2, and Carina experience orders of magnitude different levels of ionizing flux and have markedly differing geometries, all the PDRs have spatial offsets between Br$gamma$ and H$_2$ on the order of $10^{17}$cm. There is a weak negative correlation between the offset size and the intensity of ionizing radiation and a positive correlation with the radius of curvature of the cloud. We can reproduce both the size of the offsets and the dependencies of the offsets on these other variables with simple photoevaporative flow models. Both Br$gamma$ and H$_2$ 1-0 S(1) will undoubtedly be targeted in future JWST observations of PDRs, so this work can serve as a guide to interpreting these images.

قيم البحث

اقرأ أيضاً

We present an evolutionary sequence of models of the photoionized disk-wind outflow around forming massive stars based on the Core Accretion model. The outflow is expected to be the first structure to be ionized by the protostar and can confine the e xpansion of the HII region, especially in lateral directions in the plane of the accretion disk. The ionizing luminosity increases as Kelvin-Helmholz contraction proceeds, and the HII region is formed when the stellar mass reaches ~10-20Msun depending on the initial cloud core properties. Although some part of outer disk surface remains neutral due to shielding by the inner disk and the disk wind, almost the whole of the outflow is ionized in 1e3-1e4 yr after initial HII region formation. Having calculated the extent and temperature structure of the HII region within the immediate protostellar environment, we then make predictions for the strength of its free-free continuum and recombination line emission. The free-free radio emission from the ionized outflow has a flux density of ~(20-200)x(nu/10GHz)^p mJy for a source at a distance of 1 kpc with a spectral index p~0.4-0.7, and the apparent size is typically ~500AU at 10GHz. The H40alpha line profile has a width of about 100km/s. These properties of our model are consistent with observed radio winds and jets around forming massive protostars.
Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of $-1.35$ when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.
This work aims at improving the current understanding of the interaction between H ii regions and turbulent molecular clouds. We propose a new method to determine the age of a large sample of OB associations by investigating the development of their associated H ii regions in the surrounding turbulent medium. Using analytical solutions, one-dimensional (1D), and three-dimensional (3D) simulations, we constrained the expansion of the ionized bubble depending on the turbulent level of the parent molecular cloud. A grid of 1D simulations was then computed in order to build isochrone curves for H ii regions in a pressure-size diagram. This grid of models allowed to date large sample of OB associations and was used on the H ii Region Discovery Survey (HRDS). Analytical solutions and numerical simulations showed that the expansion of H ii regions is slowed down by the turbulence up to the point where the pressure of the ionized gas is in a quasi-equilibrium with the turbulent ram pressure. Based on this result, we built a grid of 1D models of the expansion of H ii regions in a profile based on Larson laws. The 3D turbulence is taken into account by an effective 1D temperature profile. The ages estimated by the isochrones of this grid agree well with literature values of well-known regions such as Rosette, RCW 36, RCW 79, and M16. We thus propose that this method can be used to give ages of young OB associations through the Galaxy such as the HRDS survey and also in nearby extra-galactic sources.
How high-mass stars form remains unclear currently. Calculation suggests that the radiation pressure of a forming star can halt spherical infall, preventing its further growth when it reaches 10 M$_{odot}$. Two major theoretical models on the further growth of stellar mass were proposed. One model suggests the mergence of less massive stellar objects, and the other is still through accretion but with the help of disk. Inflow motions are the key evidence of how forming stars further gain mass to build up massive stars. Recent development in technology has boosted the search of inflow motion. A number of high-mass collapse candidates were obtained with single dish observations, mostly showed blue profile. The infalling signatures seem to be more common in regions with developed radiation pressure than in younger cores, which opposes the theoretical prediction and is also very different from that of low mass star formation. Interferometer studies so far confirm such tendency with more obvious blue profile or inverse P Cygni profile. Results seem to favor the accretion model. However, the evolution tendency of the infall motion in massive star forming cores needs to be further explored. Direct evidence for monolithic or competitive collapse processes is still lack. ALMA will enable us to probe more detail of gravity process.
We present an analysis of the molecular hydrogen absorption system at z$_{rm abs}$ = 2.811 in the spectrum of the blazar Q0528-250. We demonstrate that the molecular cloud does not cover the background source completely. The partial coverage reveals itself as a residual flux in the bottom of saturated H_2 absorption lines. This amounts to about (2.22$pm$0.54)% of the continuum and does not depend on the wavelength. This value is small and it explains why this effect has not been detected in previous studies of this quasar spectrum. However, it is robustly detected and significantly higher than the zero flux level in the bottom of saturated lines of the Ly-alpha forest, (-0.21$pm$0.22)%. The presence of the residual flux could be caused by unresolved quasar multicomponents, by light scattered by dust, and/or by jet-cloud interaction. The H$_2$ absorption system is very well described by a two-component model without inclusion of additional components when we take partial coverage into account. The derived total column densities in the H$_2$ absorption components A and B are logN(H$_2$)[cm$^{-2}$] = 18.10$pm$0.02 and 17.82$pm$0.02, respectively. HD molecules are present only in component B. Given the column density, logN(HD)= 13.33$pm$0.02, we find N(HD)/2N(H$_2$)=(1.48$pm$0.10)x10$^{-5}$, significantly lower than previous estimations. We argue that it is crucial to take into account partial coverage effects for any analysis of H$_2$ bearing absorption systems, in particular when studying the physical state of high-redshift interstellar medium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا