ترغب بنشر مسار تعليمي؟ اضغط هنا

Partial covering of emission regions of Q 0528-250 by intervening H$_2$ clouds

155   0   0.0 ( 0 )
 نشر من قبل Alexandre Ivanchik
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of the molecular hydrogen absorption system at z$_{rm abs}$ = 2.811 in the spectrum of the blazar Q0528-250. We demonstrate that the molecular cloud does not cover the background source completely. The partial coverage reveals itself as a residual flux in the bottom of saturated H_2 absorption lines. This amounts to about (2.22$pm$0.54)% of the continuum and does not depend on the wavelength. This value is small and it explains why this effect has not been detected in previous studies of this quasar spectrum. However, it is robustly detected and significantly higher than the zero flux level in the bottom of saturated lines of the Ly-alpha forest, (-0.21$pm$0.22)%. The presence of the residual flux could be caused by unresolved quasar multicomponents, by light scattered by dust, and/or by jet-cloud interaction. The H$_2$ absorption system is very well described by a two-component model without inclusion of additional components when we take partial coverage into account. The derived total column densities in the H$_2$ absorption components A and B are logN(H$_2$)[cm$^{-2}$] = 18.10$pm$0.02 and 17.82$pm$0.02, respectively. HD molecules are present only in component B. Given the column density, logN(HD)= 13.33$pm$0.02, we find N(HD)/2N(H$_2$)=(1.48$pm$0.10)x10$^{-5}$, significantly lower than previous estimations. We argue that it is crucial to take into account partial coverage effects for any analysis of H$_2$ bearing absorption systems, in particular when studying the physical state of high-redshift interstellar medium.

قيم البحث

اقرأ أيضاً

127 - Jeong-Gyu Kim 2016
Dynamical expansion of H II regions around star clusters plays a key role in dispersing the surrounding dense gas and therefore in limiting the efficiency of star formation in molecular clouds. We use a semi-analytic method and numerical simulations to explore expansion of spherical dusty H II regions and surrounding neutral shells and the resulting cloud disruption. Our model for shell expansion adopts the static solutions of Draine (2011) for dusty H II regions and considers the contact outward forces on the shell due to radiation and thermal pressures as well as the inward gravity from the central star and the shell itself. We show that the internal structure we adopt and the shell evolution from the semi-analytic approach are in good agreement with the results of numerical simulations. Strong radiation pressure in the interior controls the shell expansion indirectly by enhancing the density and pressure at the ionization front. We calculate the minimum star formation efficiency $epsilon_{min}$ required for cloud disruption as a function of the clouds total mass and mean surface density. Within the adopted spherical geometry, we find that typical giant molecular clouds in normal disk galaxies have $epsilon_{min} lesssim 10$%, with comparable gas and radiation pressure effects on shell expansion. Massive cluster-forming clumps require a significantly higher efficiency of $epsilon_{min} gtrsim 50$% for disruption, produced mainly by radiation-driven expansion. The disruption time is typically of the order of a free-fall timescale, suggesting that the cloud disruption occurs rapidly once a sufficiently luminous H II region is formed. We also discuss limitations of the spherical idealization.
The modelling of emission spectra of molecules seen in interstellar clouds requires the knowledge of collisional rate coefficients. Among the commonly observed species, N$_2$H$^+$ is of particular interest since it was shown to be a good probe of the physical conditions of cold molecular clouds. Thus, we have calculated hyperfine-structure resolved excitation rate coefficients of N$_2$H$^+$(X$^1Sigma^+$) by H$_2(j=0)$, the most abundant collisional partner in the cold interstellar medium. The calculations are based on a new potential energy surface, obtained from highly correlated {it ab initio} calculations. State-to-state rate coefficients between the first hyperfine levels were calculated, for temperatures ranging from 5 K to 70 K. By comparison with previously published N$_2$H$^+$-He rate coefficients, we found significant differences which cannot be reproduced by a simple scaling relationship. As a first application, we also performed radiative transfer calculations, for physical conditions typical of cold molecular clouds. We found that the simulated line intensities significantly increase when using the new H$_2$ rate coefficients, by comparison with the predictions based on the He rate coefficients. In particular, we revisited the modelling of the N$_2$H$^+$ emission in the LDN 183 core, using the new collisional data, and found that all three of the density, gas kinetic temperature and N$_2$H$^+$ abundance had to be revised.
We examine new and pre-existing wide-field, continuum-corrected, narrowband images in H$_2$ 1-0 S(1) and Br$gamma$ of three regions of massive star formation: IC 1396, Cygnus OB2, and Carina. These regions contain a variety of globules, pillars, and sheets, so we can quantify how the spatial profiles of emission lines behave in photodissociation regions (PDRs) that differ in their radiation fields and geometries. We have measured 450 spatial profiles of H$_2$ and Br$gamma$ along interfaces between HII regions and PDRs. Br$gamma$ traces photoevaporative flows from the PDRs, and this emission declines more rapidly with distance as the radius of curvature of the interface decreases, in agreement with models. As noted previously, H$_2$ emission peaks deeper into the cloud relative to Br$gamma$, where the molecular gas absorbs far-UV radiation from nearby O-stars. Although PDRs in IC 1396, Cygnus OB2, and Carina experience orders of magnitude different levels of ionizing flux and have markedly differing geometries, all the PDRs have spatial offsets between Br$gamma$ and H$_2$ on the order of $10^{17}$cm. There is a weak negative correlation between the offset size and the intensity of ionizing radiation and a positive correlation with the radius of curvature of the cloud. We can reproduce both the size of the offsets and the dependencies of the offsets on these other variables with simple photoevaporative flow models. Both Br$gamma$ and H$_2$ 1-0 S(1) will undoubtedly be targeted in future JWST observations of PDRs, so this work can serve as a guide to interpreting these images.
We present spectroscopic observations obtained with the infrared Spitzer Space Telescope, which provide insight into the H$_2$ physics and gas energetics in photodissociation Regions (PDRs) of low to moderate far-ultraviolet (FUV) fields and densitie s. We analyze data on six well known Galactic PDRs (L1721, California, N7023E, Horsehead, rho Oph, N2023N), sampling a poorly explored range of excitation conditions ($chi sim 5-10^3$), relevant to the bulk of molecular clouds in galaxies. Spitzer observations of H$_2$ rotational lines are complemented with H$_2$ data, including ro-vibrational line measurements, obtained with ground-based telescopes and ISO, to constrain the relative contributions of ultraviolet pumping and collisions to the H$_2$ excitation. The data analysis is supported by model calculations with the Meudon PDR code. The observed column densities of rotationally excited H$_2$ are observed to be much higher than PDR model predictions. In the lowest excitation PDRs, the discrepancy between the model and the data is about one order of magnitude for rotational levels $J ge $3. We discuss whether an enhancement in the H$_2$ formation rate or a local increase in photoelectric heating, as proposed for brighter PDRs in former ISO studies, may improve the data-model comparison. We find that an enhancement in the H$_2$ formation rates reduces the discrepancy, but the models still fall short of the data. This large disagreement suggests that our understanding of the formation and excitation of H$_2$ and/or of PDRs energetics is still incomplete. We discuss several explanations, which could be further tested using the Herschel Space Telescope
We present results of a multi-epoch monitoring program on variability of 6$,$cm formaldehyde (H$_2$CO) masers in the massive star forming region NGC$,$7538$,$IRS$,$1 from 2008 to 2015 conducted with the GBT, WSRT, and VLA. We found that the similar v ariability behaviors of the two formaldehyde maser velocity components in NGC$,$7538$,$IRS$,$1 (which was pointed out by Araya and collaborators in 2007) have continued. The possibility that the variability is caused by changes in the maser amplification path in regions with similar morphology and kinematics is discussed. We also observed 12.2$,$GHz methanol and 22.2$,$GHz water masers toward NGC$,$7538$,$IRS$,$1. The brightest maser components of CH$_3$OH and H$_2$O species show a decrease in flux density as a function of time. The brightest H$_2$CO maser component also shows a decrease in flux density and has a similar LSR velocity to the brightest H$_2$O and 12.2$,$GHz CH$_3$OH masers. The line parameters of radio recombination lines and the 20.17 and 20.97$,$GHz CH$_3$OH transitions in NGC$,$7538$,$IRS$,$1 are also reported. In addition, we observed five other 6$,$cm formaldehyde maser regions. We found no evidence of significant variability of the 6$,$cm masers in these regions with respect to previous observations, the only possible exception being the maser in G29.96$-$0.02. All six sources were also observed in the H$_2^{13}$CO isotopologue transition of the 6$,$cm H$_2$CO line; H$_2^{13}$CO absorption was detected in five of the sources. Estimated column density ratios [H$_2^{12}$CO]/[H$_2^{13}$CO] are reported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا