ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Inference Using Inverse Probability Weighting

109   0   0.0 ( 0 )
 نشر من قبل Xinwei Ma
 تاريخ النشر 2018
  مجال البحث اقتصاد
والبحث باللغة English




اسأل ChatGPT حول البحث

Inverse Probability Weighting (IPW) is widely used in empirical work in economics and other disciplines. As Gaussian approximations perform poorly in the presence of small denominators, trimming is routinely employed as a regularization strategy. However, ad hoc trimming of the observations renders usual inference procedures invalid for the target estimand, even in large samples. In this paper, we first show that the IPW estimator can have different (Gaussian or non-Gaussian) asymptotic distributions, depending on how close to zero the probability weights are and on how large the trimming threshold is. As a remedy, we propose an inference procedure that is robust not only to small probability weights entering the IPW estimator but also to a wide range of trimming threshold choices, by adapting to these different asymptotic distributions. This robustness is achieved by employing resampling techniques and by correcting a non-negligible trimming bias. We also propose an easy-to-implement method for choosing the trimming threshold by minimizing an empirical analogue of the asymptotic mean squared error. In addition, we show that our inference procedure remains valid with the use of a data-driven trimming threshold. We illustrate our method by revisiting a dataset from the National Supported Work program.

قيم البحث

اقرأ أيضاً

In many learning problems, the training and testing data follow different distributions and a particularly common situation is the textit{covariate shift}. To correct for sampling biases, most approaches, including the popular kernel mean matching (K MM), focus on estimating the importance weights between the two distributions. Reweighting-based methods, however, are exposed to high variance when the distributional discrepancy is large and the weights are poorly estimated. On the other hand, the alternate approach of using nonparametric regression (NR) incurs high bias when the training size is limited. In this paper, we propose and analyze a new estimator that systematically integrates the residuals of NR with KMM reweighting, based on a control-variate perspective. The proposed estimator can be shown to either strictly outperform or match the best-known existing rates for both KMM and NR, and thus is a robust combination of both estimators. The experiments shows the estimator works well in practice.
183 - Joel L. Horowitz 2018
This paper presents a simple method for carrying out inference in a wide variety of possibly nonlinear IV models under weak assumptions. The method is non-asymptotic in the sense that it provides a finite sample bound on the difference between the tr ue and nominal probabilities of rejecting a correct null hypothesis. The method is a non-Studentized version of the Anderson-Rubin test but is motivated and analyzed differently. In contrast to the conventional Anderson-Rubin test, the method proposed here does not require restrictive distributional assumptions, linearity of the estimated model, or simultaneous equations. Nor does it require knowledge of whether the instruments are strong or weak. It does not require testing or estimating the strength of the instruments. The method can be applied to quantile IV models that may be nonlinear and can be used to test a parametric IV model against a nonparametric alternative. The results presented here hold in finite samples, regardless of the strength of the instruments.
This paper proposes a new estimator for selecting weights to average over least squares estimates obtained from a set of models. Our proposed estimator builds on the Mallows model average (MMA) estimator of Hansen (2007), but, unlike MMA, simultaneou sly controls for location bias and regression error through a common constant. We show that our proposed estimator-- the mean-shift Mallows model average (MSA) estimator-- is asymptotically optimal to the original MMA estimator in terms of mean squared error. A simulation study is presented, where we show that our proposed estimator uniformly outperforms the MMA estimator.
We propose a generalization of the linear panel quantile regression model to accommodate both textit{sparse} and textit{dense} parts: sparse means while the number of covariates available is large, potentially only a much smaller number of them have a nonzero impact on each conditional quantile of the response variable; while the dense part is represent by a low-rank matrix that can be approximated by latent factors and their loadings. Such a structure poses problems for traditional sparse estimators, such as the $ell_1$-penalised Quantile Regression, and for traditional latent factor estimator, such as PCA. We propose a new estimation procedure, based on the ADMM algorithm, consists of combining the quantile loss function with $ell_1$ textit{and} nuclear norm regularization. We show, under general conditions, that our estimator can consistently estimate both the nonzero coefficients of the covariates and the latent low-rank matrix. Our proposed model has a Characteristics + Latent Factors Asset Pricing Model interpretation: we apply our model and estimator with a large-dimensional panel of financial data and find that (i) characteristics have sparser predictive power once latent factors were controlled (ii) the factors and coefficients at upper and lower quantiles are different from the median.
One of the major concerns of targeting interventions on individuals in social welfare programs is discrimination: individualized treatments may induce disparities on sensitive attributes such as age, gender, or race. This paper addresses the question of the design of fair and efficient treatment allocation rules. We adopt the non-maleficence perspective of first do no harm: we propose to select the fairest allocation within the Pareto frontier. We provide envy-freeness justifications to novel counterfactual notions of fairness. We discuss easy-to-implement estimators of the policy function, by casting the optimization into a mixed-integer linear program formulation. We derive regret bounds on the unfairness of the estimated policy function, and small sample guarantees on the Pareto frontier. Finally, we illustrate our method using an application from education economics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا