ﻻ يوجد ملخص باللغة العربية
This paper presents a simple method for carrying out inference in a wide variety of possibly nonlinear IV models under weak assumptions. The method is non-asymptotic in the sense that it provides a finite sample bound on the difference between the true and nominal probabilities of rejecting a correct null hypothesis. The method is a non-Studentized version of the Anderson-Rubin test but is motivated and analyzed differently. In contrast to the conventional Anderson-Rubin test, the method proposed here does not require restrictive distributional assumptions, linearity of the estimated model, or simultaneous equations. Nor does it require knowledge of whether the instruments are strong or weak. It does not require testing or estimating the strength of the instruments. The method can be applied to quantile IV models that may be nonlinear and can be used to test a parametric IV model against a nonparametric alternative. The results presented here hold in finite samples, regardless of the strength of the instruments.
Consider the problem of estimating the local average treatment effect with an instrument variable, where the instrument unconfoundedness holds after adjusting for a set of measured covariates. Several unknown functions of the covariates need to be es
A general asymptotic theory is given for the panel data AR(1) model with time series independent in different cross sections. The theory covers the cases of stationary process, nearly non-stationary process, unit root process, mildly integrated, mild
We study the wild bootstrap inference for instrumental variable (quantile) regressions in the framework of a small number of large clusters, in which the number of clusters is viewed as fixed and the number of observations for each cluster diverges t
Inverse Probability Weighting (IPW) is widely used in empirical work in economics and other disciplines. As Gaussian approximations perform poorly in the presence of small denominators, trimming is routinely employed as a regularization strategy. How
In this work, we study a new recursive stochastic algorithm for the joint estimation of quantile and superquantile of an unknown distribution. The novelty of this algorithm is to use the Cesaro averaging of the quantile estimation inside the recursiv