ﻻ يوجد ملخص باللغة العربية
BaFe$_2$S$_3$ is a quasi one-dimensional Mott insulator that orders antiferromagnetically below 117(5),K. The application of pressure induces a transition to a metallic state, and superconductivity emerges. The evolution of the magnetic behavior on increasing pressure has up to now been either studied indirectly by means of transport measurements, or by using local magnetic probes only in the low pressure region. Here, we investigate the magnetic properties of BaFe$_2$S$_3$ up to 9.9,GPa by means of synchrotron $^{57}$Fe Mossbauer spectroscopy experiments, providing the first local magnetic phase diagram. The magnetic ordering temperature increases up to 185(5) K at 7.5,GPa, and is fully suppressed at 9.9,GPa. The low-temperature magnetic hyperfine field is continuously reduced from 12.9 to 10.3,T between 1.4 and 9.1,GPa, followed by a sudden drop to zero at 9.9,GPa indicating a first-order phase transition. The pressure dependence of the magnetic order in BaFe$_2$S$_3$ can be qualitatively explained by a combination of a bandwidth-controlled insulator-metal transition as well as a pressure enhanced exchange interaction between Fe-atoms and Fe 3textit{d}-S 3textit{p} hybridization.
We report pressure-dependent neutron diffraction and muon spin relaxation/rotation measurements combined with first-principles calculations to investigate the structural, magnetic, and electronic properties of BaFe$_2$S$_3$ under pressure. The experi
We report a comprehensive study of the spin ladder compound BaFe$_2$S$_{2.5}$Se$_{0.5}$ using neutron diffraction, inelastic neutron scattering, high pressure synchrotron diffraction, and high pressure transport techniques. We find that BaFe$_2$S$_{2
The majority of the iron-based superconductors (FeSCs) exhibit a two-dimensional square lattice structure. Recent reports of pressure-induced superconductivity in the spin-ladder system, BaFe$_2$X$_3$ (X =S,Se), introduce a quasi-one-dimensional prot
The quasi-one-dimensional spin ladder compounds, BaFe$_2$S$_3$ and BaFe$_2$Se$_3$, are investigated by infrared spectroscopy and density functional theory (DFT) calculations. We observe strong anisotropic electronic properties and an optical gap in t
We report a high-pressure single crystal study of the topological superconductor Cu$_x$Bi$_2$Se$_3$. Resistivity measurements under pressure show superconductivity is depressed smoothly. At the same time the metallic behavior is gradually lost. The u