ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Half-Quantum Flux in Unconventional Superconductor $beta$-Bi$_2$Pd

93   0   0.0 ( 0 )
 نشر من قبل Yufan Li
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of half-integer magnetic flux quantization in mesoscopic rings of superconducting $beta$-Bi$_2$Pd thin films. The half-quantum fluxoid manifests itself as a $pi$ phase shift in the quantum oscillation of the critical temperature. This result verifies unconventional superconductivity of $beta$-Bi$_2$Pd, in accord with the expectation of a topological superconductor. We also discuss the strong indication that $beta$-Bi$_2$Pd is a spin-triplet superconductor.

قيم البحث

اقرأ أيضاً

Electronic states in the gap of a superconductor inherit intriguing many-body properties from the superconductor. Here, we create these in-gap states by manipulating Cr atomic chains on the $beta$-Bi$_2$Pd superconductor. We find that the topological properties of the in-gap states can greatly vary depending on the crafted spin chain. These systems make an ideal platform for non-trivial topological phases because of the large atom-superconductor interactions and the existence of a large Rashba coupling at the Bi-terminated surface. We study two spin chains, one with atoms two-lattice-parameter apart and one with square-root-of-two lattice parameters. Of these, only the second one is in a topologically non-trivial phase, in correspondence with the spin interactions for this geometry.
We present very low temperature scanning tunneling microscopy (STM) experiments on single crystalline samples of the superconductor $beta$-Bi$_2$Pd. We find a single fully isotropic superconducting gap. However, the magnetic field dependence of the i ntervortex density of states is higher than the one expected in a single gap superconductor, and the hexagonal vortex lattice is locked to the square atomic lattice. Such increase in the intervortex density of states and vortex lattice locking have been found in superconductors with multiple superconducting gaps and anisotropic Fermi surfaces. We compare the upper critical field $H_{c2}(T)$ obtained in our sample with previous measurements and explain available data within multiband supercondutivity. We propose that $beta$-Bi$_2$Pd is a single gap multiband superconductor. We anticipate that single gap multiband superconductivity can occur in other compounds with complex Fermi surfaces.
We present the results of a study of the vortex lattice (VL) of the nickel chalcogenide superconductor TlNi2Se2, using small angle neutron scattering. This superconductor has the same crystal symmetry as the iron arsenide materials. Previous work poi nts to it being a two-gap superconductor, with an unknown pairing mechanism. No structural transitions in the vortex lattice are seen in the phase diagram, arguing against d-wave gap symmetry. Empirical fits of the temperature-dependence of the form factor and penetration depth rule out a simple s-wave model, supporting the presence of nodes in the gap function. The variation of the VL opening angle with field is consistent with earlier reports of of multiple gaps.
A prime category of superconducting materials in which to look for spin-triplet pairing and topological superconductivity are superconductors without inversion symmetry. It is predicted that the breaking of parity symmetry gives rise to an admixture of spin-singlet / spin-triplet pairing states; a triplet pairing component, being substantial, seems all but guaranteed. However, the experimental confirmation of pair mixing in any particular material remains elusive. In this work, we perform phase-sensitive experiment to examine the pairing state of noncentrosymmetric superconductor $alpha-$BiPd. The Little-Parks effect observed in mesoscopic polycrystalline $alpha-$BiPd ring devices reveals the presence of half-integer magnetic flux quantization, which provides a decisive evidence for the spin-triplet pairing state. We find mixed half-quantum fluxes and integer-quantum fluxes, consistent with the scenario of singlet-triplet pair mixing.
This article addresses the question whether the magnetic flux of stationary vortices or of half flux quanta generated by frustrated superconducting rings is noisy. It is found that the flux noise generated intrinsically by a superconductor is, in goo d approximation, not enhanced by stationary vortices. Half flux quanta generated by $pi$-rings are characterized by considerably larger noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا