ترغب بنشر مسار تعليمي؟ اضغط هنا

Factor-Driven Two-Regime Regression

51   0   0.0 ( 0 )
 نشر من قبل Youngki Shin
 تاريخ النشر 2018
  مجال البحث اقتصاد
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel two-regime regression model where regime switching is driven by a vector of possibly unobservable factors. When the factors are latent, we estimate them by the principal component analysis of a panel data set. We show that the optimization problem can be reformulated as mixed integer optimization, and we present two alternative computational algorithms. We derive the asymptotic distribution of the resulting estimator under the scheme that the threshold effect shrinks to zero. In particular, we establish a phase transition that describes the effect of first-stage factor estimation as the cross-sectional dimension of panel data increases relative to the time-series dimension. Moreover, we develop bootstrap inference and illustrate our methods via numerical studies.



قيم البحث

اقرأ أيضاً

We propose a new estimator for the average causal effects of a binary treatment with panel data in settings with general treatment patterns. Our approach augments the two-way-fixed-effects specification with the unit-specific weights that arise from a model for the assignment mechanism. We show how to construct these weights in various settings, including situations where units opt into the treatment sequentially. The resulting estimator converges to an average (over units and time) treatment effect under the correct specification of the assignment model. We show that our estimator is more robust than the conventional two-way estimator: it remains consistent if either the assignment mechanism or the two-way regression model is correctly specified and performs better than the two-way-fixed-effect estimator if both are locally misspecified. This strong double robustness property quantifies the benefits from modeling the assignment process and motivates using our estimator in practice.
Factor and sparse models are two widely used methods to impose a low-dimensional structure in high-dimension. They are seemingly mutually exclusive. We propose a lifting method that combines the merits of these two models in a supervised learning met hodology that allows to efficiently explore all the information in high-dimensional datasets. The method is based on a flexible model for high-dimensional panel data, called factor-augmented regression (FarmPredict) model with both observable or latent common factors, as well as idiosyncratic components. This model not only includes both principal component (factor) regression and sparse regression as specific models but also significantly weakens the cross-sectional dependence and hence facilitates model selection and interpretability. The methodology consists of three steps. At each step, the remaining cross-section dependence can be inferred by a novel test for covariance structure in high-dimensions. We developed asymptotic theory for the FarmPredict model and demonstrated the validity of the multiplier bootstrap for testing high-dimensional covariance structure. This is further extended to testing high-dimensional partial covariance structures. The theory is supported by a simulation study and applications to the construction of a partial covariance network of the financial returns and a prediction exercise for a large panel of macroeconomic time series from FRED-MD database.
Regression discontinuity (RD) design in a practical context is often contaminated by units behavior to manipulate their treatment assignment. However, we have no formal justification for point identification in such a contaminated RD design. Diagnost ic tests have been proposed to detect manipulations, but they do not guarantee identification without some auxiliary assumptions, and the auxiliary assumptions have not been proposed. This study proposes a set of restrictions for possibly manipulated RD designs to validate point identification and diagnostic tests. The same restrictions simultaneously validate worst-case bounds when the diagnostic tests are validated. Therefore, our designs are manipulation robust in testing and identification. The worst-case bounds have two shorter bounds as special cases, and we apply special-case bounds to a controversy regarding the incumbency margin study of the U.S. House of Representatives elections studied in Lee (2008).
The widespread use of quantile regression methods depends crucially on the existence of fast algorithms. Despite numerous algorithmic improvements, the computation time is still non-negligible because researchers often estimate many quantile regressi ons and use the bootstrap for inference. We suggest two new fast algorithms for the estimation of a sequence of quantile regressions at many quantile indexes. The first algorithm applies the preprocessing idea of Portnoy and Koenker (1997) but exploits a previously estimated quantile regression to guess the sign of the residuals. This step allows for a reduction of the effective sample size. The second algorithm starts from a previously estimated quantile regression at a similar quantile index and updates it using a single Newton-Raphson iteration. The first algorithm is exact, while the second is only asymptotically equivalent to the traditional quantile regression estimator. We also apply the preprocessing idea to the bootstrap by using the sample estimates to guess the sign of the residuals in the bootstrap sample. Simulations show that our new algorithms provide very large improvements in computation time without significant (if any) cost in the quality of the estimates. For instance, we divide by 100 the time required to estimate 99 quantile regressions with 20 regressors and 50,000 observations.
We study the causal interpretation of regressions on multiple dependent treatments and flexible controls. Such regressions are often used to analyze randomized control trials with multiple intervention arms, and to estimate institutional quality (e.g . teacher value-added) with observational data. We show that, unlike with a single binary treatment, these regressions do not generally estimate convex averages of causal effects-even when the treatments are conditionally randomly assigned and the controls fully address omitted variables bias. We discuss different solutions to this issue, and propose as a solution anew class of efficient estimators of weighted average treatment effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا