ترغب بنشر مسار تعليمي؟ اضغط هنا

A Survey of Atomic Carbon [C I] in High-redshift Main-Sequence Galaxies

88   0   0.0 ( 0 )
 نشر من قبل Francesco Valentino
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first results of an ALMA survey of the lower fine structure line of atomic carbon [C I]$(^3P_1,-,^{3}P_0)$ in far infrared-selected galaxies on the main sequence at $zsim1.2$ in the COSMOS field. We compare our sample with a comprehensive compilation of data available in the literature for local and high-redshift starbursting systems and quasars. We show that the [C I]($^3P_1$$rightarrow$$^3P_0$) luminosity correlates on global scales with the infrared luminosity $L_{rm IR}$ similarly to low-$J$ CO transitions. We report a systematic variation of $L_{rm [C,I]^3P_1,-, ^3P_0}$/$L_{rm IR}$ as a function of the galaxy type, with the ratio being larger for main-sequence galaxies than for starbursts and sub-millimeter galaxies at fixed $L_{rm IR}$. The $L_{rm [C,I]^3P_1,-, ^3P_0}$/$L_{rm CO(2-1)}$ and $M_{rm{[C I]}}$/$M_{rm dust}$ mass ratios are similar for main-sequence galaxies and for local and high-redshift starbursts within a 0.2 dex intrinsic scatter, suggesting that [C I] is a good tracer of molecular gas mass as CO and dust. We derive a fraction of $f_{rm{[C,I]}} = M_{rm{[C,I]}} / M_{rm{C}}sim3-13$% of the total carbon mass in the atomic neutral phase. Moreover, we estimate the neutral atomic carbon abundance, the fundamental ingredient to calibrate [C I] as a gas tracer, by comparing $L_{rm [C,I]^3P_1,-, ^3P_0}$ and available gas masses from CO lines and dust emission. We find lower [C I] abundances in main-sequence galaxies than in starbursting systems and sub-millimeter galaxies, as a consequence of the canonical $alpha_{rm CO}$ and gas-to-dust conversion factors. This argues against the application to different galaxy populations of a universal standard [C I] abundance derived from highly biased samples.

قيم البحث

اقرأ أيضاً

We present a survey of atomic carbon (CI) emission in high-redshift (z>2) submillimeter galaxies (SMGs) and quasar host galaxies (QSOs). Sensitive observations of the CI(3P_1->3P_0) and CI(3P_2->3P_1) lines have been obtained at the IRAM Plateau de B ure interferometer and the IRAM 30m telescope. A total of 16 CI lines have been targeted in 10 sources, leading to a total of 10 detected lines --- this doubles the number of CI observations at high redshift to date. We include previously published CI observations (an additional 5 detected sources) in our analysis. Our main finding is that the CI properties of the studied high-redshift systems do not differ significantly from what is found in low-redshift systems, including the Milky Way. The CI(3P_2->3P_1)/CI(3P_1->3P_0) and the CI(3P_1->3P_0)/12CO(3-2) line luminosity (L) ratios change little in our sample, with respective ratios of 0.55+/-0.15 and 0.32+/-0.13. The CI lines are not an important contributor to cooling of the molecular gas (average L_CI/L_FIR ~ (7.7+/-4.6) x 10^-6). We derive a mean carbon excitation temperature of 29.1+/-6.3 K, broadly consistent with dust temperatures derived for high-redshift starforming systems, but lower than gas temperatures typically derived for starbursts in the local universe. The carbon abundance of X_CI/X_H2~8.4+/-3.5 x 10^-5 is of the same order as found in the Milky Way and nearby galaxies. This implies that the high-z galaxies studied here are significantly enriched in carbon on galactic scales, even though the look-back times are considerable (the average redshift of the sample sources corresponds to an age of the universe of ~2 Gyr).
We introduce the ALMA Redshift 4 Survey (AR4S), a systematic ALMA survey of all the known galaxies with stellar mass (M*) larger than 5e10 Msun at 3.5<z<5 in the GOODS--south, UDS and COSMOS CANDELS fields. The sample we have analyzed in this paper i s composed of 96 galaxies observed with ALMA at 890um (180um rest-frame) with an on-source integration time of 1.3 min per galaxy. We detected 32% of the sample at more than 3 sigma significance. Using the stacked ALMA and Herschel photometry, we derived an average dust temperature of 40+/-2 K for the whole sample, and extrapolate the Lir and SFR for all our galaxies based on their ALMA flux. We then used a forward modeling approach to estimate their intrinsic sSFR distribution, deconvolved of measurement errors and selection effects: we find a linear relation between SFR and M*, with a median sSFR=2.8+/-0.8 Gyr and a dispersion around that relation of 0.28+/-0.13 dex. This latter value is consistent with that measured at lower redshifts, which is proof that the main sequence of star-forming galaxies was already in place at z=4, at least among massive galaxies. These new constraints on the properties of the main sequence are in good agreement with the latest predictions from numerical simulations, and suggest that the bulk of star formation in galaxies is driven by the same mechanism from z=4 to the present day, that is, over at least 90% of the cosmic history. We also discuss the consequences of our results on the population of early quiescent galaxies. This paper is part of a series that will employ these new ALMA observations to explore the star formation and dust properties of the massive end of the z=4 galaxy population.
Dusty high-z galaxies are extreme objects with high star formation rates (SFRs) and luminosities. Characterising the properties of this population and analysing their evolution over cosmic time is key to understanding galaxy evolution in the early Un iverse. We select a sample of high-z dusty star-forming galaxies (DSFGs) and evaluate their position on the main sequence (MS) of star-forming galaxies, the well-known correlation between stellar mass and SFR. We aim to understand the causes of their high star formation and quantify the percentage of DSFGs that lie above the MS. We adopted a multi-wavelength approach with data from optical to submillimetre wavelengths from surveys at the North Ecliptic Pole (NEP) to study a submillimetre sample of high-redshift galaxies. Two submillimetre selection methods were used, including: sources selected at 850$mathrm{, mu m}$ with the Sub-millimetre Common-User Bolometer Array 2) SCUBA-2 instrument and {it Herschel}-Spectral and Photometric Imaging Receiver (SPIRE) selected sources (colour-colour diagrams and 500$mathrm{, mu m}$ risers), finding that 185 have good multi-wavelength coverage. The resulting sample of 185 high-z candidates was further studied by spectral energy distribution (SED) fitting with the CIGALE fitting code. We derived photometric redshifts, stellar masses, SFRs, and additional physical parameters, such as the infrared luminosity and active galactic nuclei (AGN) contribution. We find that the different results in the literature are, only in part, due to selection effects. The difference in measured SFRs affects the position of DSFGs on the MS of galaxies; most of the DSFGs lie on the MS (60%). Finally, we find that the star formation efficiency (SFE) depends on the epoch and intensity of the star formation burst in the galaxy; the later the burst, the more intense the star formation.
We revisit the cold gas contents of galaxies in a protocluster at z=2.49 using the lowest neutral atomic carbon transition [CI]$^3$P$_1$-$^3$P$_0$ from Atacama Large Millimeter/submillimeter Array observations. We aim to test if the same gas mass cal ibration applied in field galaxies can be applied to protocluster galaxies. Five galaxies out of sixteen targeted galaxies are detected in the [CI] line, and these are all previously detected in CO(3-2) and CO(4-3) and three in 1.1 mm dust continuum. We investigate the line luminosity relations between CO and [CI] in the protocluster and compare them with other previous studies. We then compare the gas mass based on three gas tracers of [CI], CO(3-2), and dust if at least one of the last two tracers are available. Using the calibration adopted for field main-sequence galaxies, the [CI]-based gas measurements are lower than or comparable to the CO-based gas measurements by -0.35 dex at the lowest with the mean deviation of -0.14 dex. The differences between [CI]- and the dust- based measurements are relatively mild by up to 0.16 dex with the mean difference of 0.02 dex. Taking these all together with calibration uncertainties, with the [CI] line, we reconfirm our previous findings that the mean gas fraction is comparable to field galaxies for a stellar-mass range of $log(M_{rm star}/M_odot = [10.6, 11.3]$. However, at least for these secure five detections, the depletion time scale decreases more rapidly with stellar mass than field galaxies that might be related to earlier quenching in dense environments.
Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so called dropout technique or Ly-alpha selection. However, the availability of multifilter data allows now replacing the dropout selections by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims. Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing in the study of the brightest, less frequent, high redshift galaxies. Methods. The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results. Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z=2.5, 3.0, 3.5, 4.0, and 4.5, being complete up to the limiting magnitude at m_UV(AB)=24. With the wide field ALHAMBRA data we especially contribute in the study of the brightest ends of these counts, sampling well the surface densities down to m_UV(AB)=21-22. Conclusions. We show that using the zPDFs it is easy to select a clean sample of high redshift galaxies. We also show that statistical analysis of the properties of galaxies is better done using a probabilistic approach, which takes into account both the incompleteness and contamination in a natural way.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا