ﻻ يوجد ملخص باللغة العربية
We introduce the ALMA Redshift 4 Survey (AR4S), a systematic ALMA survey of all the known galaxies with stellar mass (M*) larger than 5e10 Msun at 3.5<z<5 in the GOODS--south, UDS and COSMOS CANDELS fields. The sample we have analyzed in this paper is composed of 96 galaxies observed with ALMA at 890um (180um rest-frame) with an on-source integration time of 1.3 min per galaxy. We detected 32% of the sample at more than 3 sigma significance. Using the stacked ALMA and Herschel photometry, we derived an average dust temperature of 40+/-2 K for the whole sample, and extrapolate the Lir and SFR for all our galaxies based on their ALMA flux. We then used a forward modeling approach to estimate their intrinsic sSFR distribution, deconvolved of measurement errors and selection effects: we find a linear relation between SFR and M*, with a median sSFR=2.8+/-0.8 Gyr and a dispersion around that relation of 0.28+/-0.13 dex. This latter value is consistent with that measured at lower redshifts, which is proof that the main sequence of star-forming galaxies was already in place at z=4, at least among massive galaxies. These new constraints on the properties of the main sequence are in good agreement with the latest predictions from numerical simulations, and suggest that the bulk of star formation in galaxies is driven by the same mechanism from z=4 to the present day, that is, over at least 90% of the cosmic history. We also discuss the consequences of our results on the population of early quiescent galaxies. This paper is part of a series that will employ these new ALMA observations to explore the star formation and dust properties of the massive end of the z=4 galaxy population.
Star formation rate (SFR) measurements at z>4 have relied mostly on rest-frame far-ultraviolet (FUV) observations. The corrections for dust attenuation based on IRX-$beta$ relation are highly uncertain and are still debated in the literature. Hence,
Using stellar population models, we predicted that the Dark Energy Survey (DES) - due to its special combination of area (5000 deg. sq.) and depth ($i = 24.3$) - would be in the position to detect massive ($gtrsim 10^{11}$ M$_{odot}$) galaxies at $z
We present the first results of an ALMA survey of the lower fine structure line of atomic carbon [C I]$(^3P_1,-,^{3}P_0)$ in far infrared-selected galaxies on the main sequence at $zsim1.2$ in the COSMOS field. We compare our sample with a comprehens
We use K-band spectroscopic data from the Multi-Object Spectroscopic Emission Line (MOSEL) survey to analyze the kinematic properties of galaxies at z>3. Our sample consists of 34 galaxies at 3.0<zspec<3.8 between 9.0<log(M_star)<11.0. We find that g
The Lya line in the UV and the [CII] line in the FIR are widely used tools to identify galaxies and to obtain insights into ISM properties in the early Universe. By combining data obtained with ALMA in band 7 at ~ 320 GHz as part of the ALMA Large Pr