ترغب بنشر مسار تعليمي؟ اضغط هنا

The ALMA Redshift 4 Survey (AR4S): I. The massive end of the z=4 main sequence of galaxies

58   0   0.0 ( 0 )
 نشر من قبل Corentin Schreiber
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the ALMA Redshift 4 Survey (AR4S), a systematic ALMA survey of all the known galaxies with stellar mass (M*) larger than 5e10 Msun at 3.5<z<5 in the GOODS--south, UDS and COSMOS CANDELS fields. The sample we have analyzed in this paper is composed of 96 galaxies observed with ALMA at 890um (180um rest-frame) with an on-source integration time of 1.3 min per galaxy. We detected 32% of the sample at more than 3 sigma significance. Using the stacked ALMA and Herschel photometry, we derived an average dust temperature of 40+/-2 K for the whole sample, and extrapolate the Lir and SFR for all our galaxies based on their ALMA flux. We then used a forward modeling approach to estimate their intrinsic sSFR distribution, deconvolved of measurement errors and selection effects: we find a linear relation between SFR and M*, with a median sSFR=2.8+/-0.8 Gyr and a dispersion around that relation of 0.28+/-0.13 dex. This latter value is consistent with that measured at lower redshifts, which is proof that the main sequence of star-forming galaxies was already in place at z=4, at least among massive galaxies. These new constraints on the properties of the main sequence are in good agreement with the latest predictions from numerical simulations, and suggest that the bulk of star formation in galaxies is driven by the same mechanism from z=4 to the present day, that is, over at least 90% of the cosmic history. We also discuss the consequences of our results on the population of early quiescent galaxies. This paper is part of a series that will employ these new ALMA observations to explore the star formation and dust properties of the massive end of the z=4 galaxy population.



قيم البحث

اقرأ أيضاً

Star formation rate (SFR) measurements at z>4 have relied mostly on rest-frame far-ultraviolet (FUV) observations. The corrections for dust attenuation based on IRX-$beta$ relation are highly uncertain and are still debated in the literature. Hence, rest-frame far-infrared (FIR) observations are necessary to constrain the dust-obscured component of the SFR. In this paper, we exploit the rest-frame FIR continuum observations collected by the ALMA Large Program to INvestigate [CII] at Early times (ALPINE) to directly constrain the obscured SFR in galaxies at 4.4<z<5.9. We use stacks of continuum images to measure average infrared (IR) luminosities taking into account both detected and undetected sources. Based on these measurements, we measure the position of the main sequence of star-forming galaxies and the specific SFR (sSFR) at $zsim4.5$ and $zsim5.5$. We find that the main sequence and sSFR do not evolve significantly between $zsim4.5$ and $zsim5.5$, as opposed to lower redshifts. We develop a method to derive the obscured SFR density (SFRD) using the stellar masses or FUV-magnitudes as a proxy of FIR fluxes measured on the stacks and combining them with the galaxy stellar mass functions and FUV luminosity functions from the literature. We obtain consistent results independent of the chosen proxy. We find that the obscured fraction of SFRD is decreasing with increasing redshift but even at $zsim5.5$ it constitutes around 61% of the total SFRD.
Using stellar population models, we predicted that the Dark Energy Survey (DES) - due to its special combination of area (5000 deg. sq.) and depth ($i = 24.3$) - would be in the position to detect massive ($gtrsim 10^{11}$ M$_{odot}$) galaxies at $z sim 4$. We confront those theoretical calculations with the first $sim 150$ deg. sq. of DES data reaching nominal depth. From a catalogue containing $sim 5$ million sources, $sim26000$ were found to have observed-frame $g-r$ vs $r-i$ colours within the locus predicted for $z sim 4$ massive galaxies. We further removed contamination by stars and artefacts, obtaining 606 galaxies lining up by the model selection box. We obtained their photometric redshifts and physical properties by fitting model templates spanning a wide range of star formation histories, reddening and redshift. Key to constrain the models is the addition, to the optical DES bands $g$, $r$, $i$, $z$, and $Y$, of near-IR $J$, $H$, $K_{s}$ data from the Vista Hemisphere Survey. We further applied several quality cuts to the fitting results, including goodness of fit and a unimodal redshift probability distribution. We finally select 233 candidates whose photometric redshift probability distribution function peaks around $zsim4$, have high stellar masses ($log($M$^{*}$/M$_{odot})sim 11.7$ for a Salpeter IMF) and ages around 0.1 Gyr, i.e. formation redshift around 5. These properties match those of the progenitors of the most massive galaxies in the local universe. This is an ideal sample for spectroscopic follow-up to select the fraction of galaxies which is truly at high redshift. These initial results and those at the survey completion, which we shall push to higher redshifts, will set unprecedented constraints on galaxy formation, evolution, and the re-ionisation epoch.
We present the first results of an ALMA survey of the lower fine structure line of atomic carbon [C I]$(^3P_1,-,^{3}P_0)$ in far infrared-selected galaxies on the main sequence at $zsim1.2$ in the COSMOS field. We compare our sample with a comprehens ive compilation of data available in the literature for local and high-redshift starbursting systems and quasars. We show that the [C I]($^3P_1$$rightarrow$$^3P_0$) luminosity correlates on global scales with the infrared luminosity $L_{rm IR}$ similarly to low-$J$ CO transitions. We report a systematic variation of $L_{rm [C,I]^3P_1,-, ^3P_0}$/$L_{rm IR}$ as a function of the galaxy type, with the ratio being larger for main-sequence galaxies than for starbursts and sub-millimeter galaxies at fixed $L_{rm IR}$. The $L_{rm [C,I]^3P_1,-, ^3P_0}$/$L_{rm CO(2-1)}$ and $M_{rm{[C I]}}$/$M_{rm dust}$ mass ratios are similar for main-sequence galaxies and for local and high-redshift starbursts within a 0.2 dex intrinsic scatter, suggesting that [C I] is a good tracer of molecular gas mass as CO and dust. We derive a fraction of $f_{rm{[C,I]}} = M_{rm{[C,I]}} / M_{rm{C}}sim3-13$% of the total carbon mass in the atomic neutral phase. Moreover, we estimate the neutral atomic carbon abundance, the fundamental ingredient to calibrate [C I] as a gas tracer, by comparing $L_{rm [C,I]^3P_1,-, ^3P_0}$ and available gas masses from CO lines and dust emission. We find lower [C I] abundances in main-sequence galaxies than in starbursting systems and sub-millimeter galaxies, as a consequence of the canonical $alpha_{rm CO}$ and gas-to-dust conversion factors. This argues against the application to different galaxy populations of a universal standard [C I] abundance derived from highly biased samples.
We use K-band spectroscopic data from the Multi-Object Spectroscopic Emission Line (MOSEL) survey to analyze the kinematic properties of galaxies at z>3. Our sample consists of 34 galaxies at 3.0<zspec<3.8 between 9.0<log(M_star)<11.0. We find that g alaxies with log(M_star) > 10.2 at z > 3 have 56 +/- 21 km/s lower integrated velocity dispersion compared to galaxies at z ~ 2 of similar stellar mass. Massive galaxies at z > 3 have either a flat or declining star formation history (SFH), whereas similar stellar mass galaxies at z~2.0 exhibit a slight peak in the past 500 Myrs. Comparing with the IllustrisTNG cosmological simulation, we find that (i) the dynamical mass of massive galaxies in simulations (log(M_star) > 10.0) increases by ~0.1 dex at a fixed stellar mass between z=2.0-3.0, and (ii) dynamical mass growth is coupled with a rapid rise in the ex-situ stellar mass fraction (stars accreted from other galaxies) for massive galaxies at z < 3.5. We speculate that the rising contribution of ex-situ stellar mass to the total stellar mass growth of massive galaxies is driving the higher integrated velocity dispersion and rising SFHs of massive galaxies at z~2.0 compared to galaxies of similar stellar masses at z > 3.
The Lya line in the UV and the [CII] line in the FIR are widely used tools to identify galaxies and to obtain insights into ISM properties in the early Universe. By combining data obtained with ALMA in band 7 at ~ 320 GHz as part of the ALMA Large Pr ogram to INvestigate [CII] at Early Times (ALPINE) with spectroscopic data from DEIMOS at Keck, VIMOS and FORS2 at the VLT, we assembled a unique sample of 53 main-sequence star-forming galaxies at 4.4 < z < 6 in which we detect both the Lya line and the [CII]. We used [CII], observed with ALMA, as a tracer of the systemic velocity of the galaxies, and we find that 90% of the selected objects have Lya-[CII] velocity offsets in the range 0 < Dv_Lya-[CII] < 400 km/s, in line with the few measurements available so far in the early Universe, and significantly smaller than those observed at lower z. We observe ISM-[CII] offsets in the range -500 < Dv_ISM-[CII] < 0 km/s, in line with values at all redshifts. We find significant anticorrelations between Dv_Lya-[CII] and the Lya rest-frame equivalent width EW0(Lya) (or equivalently, the Lya escape fraction f_esc(Lya)). According to available models for the radiative transfer of Lya photons, the escape of Lya photons would be favored in galaxies with high outflow velocities, in agreement with our observations. The uniform shell model would also predict that the Lya escape in galaxies with slow outflows (0 < v_out < 300 km/s) is mainly determined by the neutral hydrogen column density (NHI), while the alternative model by Steidel+10 would favor a combination of NHI and covering fraction as driver of the Lya escape. We suggest that the observed increase in Lya escape that is observed between z~2 and z~6 is not due to a higher incidence of fast outflows at high redshift, but rather to a decrease in average NHI along the line of sight, or alternatively, a decrease in HI covering fraction. [abridged]
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا