ترغب بنشر مسار تعليمي؟ اضغط هنا

A simple analysis of the mixed-state information metric in AdS$_3$/CFT$_2$

210   0   0.0 ( 0 )
 نشر من قبل Xiao-Bao Xu
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the quantum information metrics of a thermal CFT on $mathbb R^{1,1}$ perturbed by the scalar primary operators of conformal dimension $Delta=3,4,5,6$. In particular, we assume that the Hamiltonian of the mixed state commutes with each other and the temperature is fixed. Under these conditions, the evaluation is analogous to the pure state case. We also apply the method of [arXiv:1607.06519] to calculate the mixed state information metric for the scalar primary operator with conformal dimension $Delta=4$ holographically. We find an exact agreement between the two results in our approach.



قيم البحث

اقرأ أيضاً

We conjecture the Quantum Spectral Curve equations for string theory on $AdS_3 times S^3 times T^4$ with RR charge and its CFT$_2$ dual. We show that in the large-length regime, under additional mild assumptions, the QSC reproduces the Asymptotic Bet he Ansatz equations for the massive sector of the theory, including the exact dressing phases found in the literature. The structure of the QSC shares many similarities with the previously known AdS$_5$ and AdS$_4$ cases, but contains a critical new feature - the branch cuts are no longer quadratic. Nevertheless, we show that much of the QSC analysis can be suitably generalised producing a self-consistent system of equations. While further tests are necessary, particularly outside the massive sector, the simplicity and self-consistency of our construction suggests the completeness of the QSC.
65 - Stefano Speziali 2019
In this paper we study spin 2 fluctuations around a warped $AdS_3 times S^2 times T^4 times mathcal{I}_{rho}$ background in type IIA supergravity with small $mathcal{N} = (0,4)$ supersymmetry. We find a class of fluctuations, which will be called tex tit{universal}, that is independent of the background data and corresponds to operators with scaling dimension $Delta = 2l +2$, being $l$ the angular-momentum-quantum-number on the $S^2$ which realises the $SU(2)_R$ symmetry. We compute the central charge for $mathcal{N} = (0,4)$ two-dimensional superconformal theories from the action of the spin 2 fluctuations.
73 - Jun Tsujimura 2021
The Ryu-Takayanagi conjecture contradicts $1+1$-dimensional CFT if we apply it to two far disjoint intervals because it predicts the product state. Instead of the conventional conjecture, we propose a holographic entanglement entropy formula that the entanglement entropy of two disjoint intervals is described by the appropriate sum of the area of signed extremal curves. We confirm that the resulting holographic entanglement entropy is consistent with the entanglement entropy for the specific two disjoint intervals evaluated in the large $c$ limit CFT.
We revisit the construction in four-dimensional gauged $Spin(4)$ supergravity of the holographic duals to topologically twisted three-dimensional $mathcal{N}=4$ field theories. Our focus in this paper is to highlight some subtleties related to preser ving supersymmetry in AdS/CFT, namely the inclusion of finite counterterms and the necessity of a Legendre transformation to find the dual to the field theory generating functional. Studying the geometry of these supergravity solutions, we conclude that the gravitational free energy is indeed independent from the metric of the boundary, and it vanishes for any smooth solution.
We present how the surface/state correspondence, conjectured in arXiv:1503.03542, works in the setup of AdS3/CFT2 by generalizing the formulation of cMERA. The boundary states in conformal field theories play a crucial role in our formulation and the bulk diffeomorphism is naturally taken into account. We give an identification of bulk local operators which reproduces correct scalar field solutions on AdS3 and bulk scalar propagators. We also calculate the information metric for a locally excited state and show that it is given by that of 2d hyperbolic manifold, which is argued to describe the time slice of AdS3.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا