ترغب بنشر مسار تعليمي؟ اضغط هنا

Enumeration of $S$-omino towers and row-convex $k$-omino towers

65   0   0.0 ( 0 )
 نشر من قبل Alexander Haupt
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We first enumerate a generalization of domino towers that was proposed by Tricia M. Brown (J. Integer Seq. 20 (2017)), which we call S-omino towers. We establish equations that the generating function must satisfy and then apply the Lagrange inversion formula to find a closed formula for the number of towers. We also show a connection to generalized Dyck paths and provide an explicit bijection. Finally, we consider the set of row-convex k-omino towers, introduced by Brown, and calculate an exact generating function.



قيم البحث

اقرأ أيضاً

We consider the relationship between the Laplacians on two sequences of planar graphs, one from the theory of self-similar groups and one from analysis on fractals. By establishing a spectral decimation map between these sequences we give an elementa ry calculation of the spectrum of the former, which was first computed by Grigorchuk and v{S}uni{c}. Our method also gives a full description of the eigenfunctions.
A cyclic permutation $pi:{1, dots, N}to {1, dots, N}$ has a emph{block structure} if there is a partition of ${1, dots, N}$ into $k otin{1,N}$ segments (emph{blocks}) permuted by $pi$; call $k$ the emph{period} of this block structure. Let $p_1<dots <p_s$ be periods of all possible block structures on $pi$. Call the finite string $(p_1/1,$ $p_2/p_1,$ $dots,$ $p_s/p_{s-1}, N/p_s)$ the {it renormalization tower of $pi$}. The same terminology can be used for emph{patterns}, i.e., for families of cycles of interval maps inducing the same (up to a flip) cyclic permutation. A renormalization tower $mathcal M$ emph{forces} a renormalization tower $mathcal N$ if every continuous interval map with a cycle of pattern with renormalization tower $mathcal M$ must have a cycle of pattern with renormalization tower $mathcal N$. We completely characterize the forcing relation among renormalization towers. Take the following order among natural numbers: $ 4gg 6gg 3gg dots gg 4ngg 4n+2gg 2n+1ggdots gg 2gg 1 $ understood in the strict sense. We show that the forcing relation among renormalization towers is given by the lexicographic extension of this order. Moreover, for any tail $T$ of this order there exists an interval map for which the set of renormalization towers of its cycles equals $T$.
128 - Igor Nikolaev 2021
It is shown that the real class field towers are always finite. The proof is based on Castelnuovos theory of the algebraic surfaces and a functor from such surfaces to the Etesi C*-algebras.
This paper concerns towers of curves over a finite field with many rational points, following Garcia--Stichtenoth and Elkies. We present a new method to produce such towers. A key ingredient is the study of algebraic solutions to Fuchsian differentia l equations modulo $p$. We apply our results to towers of modular curves, and find new asymptotically good towers.
A simulation approach to the stochastic growth of bacterial towers is presented, in which a non-uniform and finite nutrient supply essentially determines the emerging structure through elementary chemotaxis. The method is based on cellular automata a nd we use simple, microscopic, local rules for bacterial division in nutrient-rich surroundings. Stochastic nutrient diffusion, while not crucial to the dynamics of the total population, is influential in determining the porosity of the bacterial tower and the roughness of its surface. As the bacteria run out of food, we observe an exponentially rapid saturation to a carrying capacity distribution, similar in many respects to that found in a recently proposed phenomenological hierarchical population model, which uses heuristic parameters and macroscopic rules. Complementary to that phenomenological model, the simulation aims at giving more microscopic insight into the possible mechanisms for one of the recently much studied bacterial morphotypes, known as towering biofilm, observed experimentally using confocal laser microscopy. A simulation suggesting a mechanism for biofilm resistance to antibiotics is also shown.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا