ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-Stage Reinforcement Learning For Object Detection

70   0   0.0 ( 0 )
 نشر من قبل Sebastian Niehaus
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a reinforcement learning approach for detecting objects within an image. Our approach performs a step-wise deformation of a bounding box with the goal of tightly framing the object. It uses a hierarchical tree-like representation of predefined region candidates, which the agent can zoom in on. This reduces the number of region candidates that must be evaluated so that the agent can afford to compute new feature maps before each step to enhance detection quality. We compare an approach that is based purely on zoom actions with one that is extended by a second refinement stage to fine-tune the bounding box after each zoom step. We also improve the fitting ability by allowing for different aspect ratios of the bounding box. Finally, we propose different reward functions to lead to a better guidance of the agent while following its search trajectories. Experiments indicate that each of these extensions leads to more correct detections. The best performing approach comprises a zoom stage and a refinement stage, uses aspect-ratio modifying actions and is trained using a combination of three different reward metrics.



قيم البحث

اقرأ أيضاً

63 - Ya-Li Li , Shengjin Wang 2019
Object detection has been a challenging task in computer vision. Although significant progress has been made in object detection with deep neural networks, the attention mechanism is far from development. In this paper, we propose the hybrid attentio n mechanism for single-stage object detection. First, we present the modules of spatial attention, channel attention and aligned attention for single-stage object detection. In particular, stacked dilated convolution layers with symmetrically fixed rates are constructed to learn spatial attention. The channel attention is proposed with the cross-level group normalization and squeeze-and-excitation module. Aligned attention is constructed with organized deformable filters. Second, the three kinds of attention are unified to construct the hybrid attention mechanism. We then embed the hybrid attention into Retina-Net and propose the efficient single-stage HAR-Net for object detection. The attention modules and the proposed HAR-Net are evaluated on the COCO detection dataset. Experiments demonstrate that hybrid attention can significantly improve the detection accuracy and the HAR-Net can achieve the state-of-the-art 45.8% mAP, outperform existing single-stage object detectors.
72 - Kibok Lee , Kimin Lee , Kyle Min 2018
Deep neural networks have achieved impressive success in large-scale visual object recognition tasks with a predefined set of classes. However, recognizing objects of novel classes unseen during training still remains challenging. The problem of dete cting such novel classes has been addressed in the literature, but most prior works have focused on providing simple binary or regressive decisions, e.g., the output would be known, novel, or corresponding confidence intervals. In this paper, we study more informative novelty detection schemes based on a hierarchical classification framework. For an object of a novel class, we aim for finding its closest super class in the hierarchical taxonomy of known classes. To this end, we propose two different approaches termed top-down and flatten methods, and their combination as well. The essential ingredients of our methods are confidence-calibrated classifiers, data relabeling, and the leave-one-out strategy for modeling novel classes under the hierarchical taxonomy. Furthermore, our method can generate a hierarchical embedding that leads to improved generalized zero-shot learning performance in combination with other commonly-used semantic embeddings.
Object detection is a fundamental visual recognition problem in computer vision and has been widely studied in the past decades. Visual object detection aims to find objects of certain target classes with precise localization in a given image and ass ign each object instance a corresponding class label. Due to the tremendous successes of deep learning based image classification, object detection techniques using deep learning have been actively studied in recent years. In this paper, we give a comprehensive survey of recent advances in visual object detection with deep learning. By reviewing a large body of recent related work in literature, we systematically analyze the existing object detection frameworks and organize the survey into three major parts: (i) detection components, (ii) learning strategies, and (iii) applications & benchmarks. In the survey, we cover a variety of factors affecting the detection performance in detail, such as detector architectures, feature learning, proposal generation, sampling strategies, etc. Finally, we discuss several future directions to facilitate and spur future research for visual object detection with deep learning. Keywords: Object Detection, Deep Learning, Deep Convolutional Neural Networks
Expensive bounding-box annotations have limited the development of object detection task. Thus, it is necessary to focus on more challenging task of few-shot object detection. It requires the detector to recognize objects of novel classes with only a few training samples. Nowadays, many existing popular methods based on meta-learning have achieved promising performance, such as Meta R-CNN series. However, only a single category of support data is used as the attention to guide the detecting of query images each time. Their relevance to each other remains unexploited. Moreover, a lot of recent works treat the support data and query images as independent branch without considering the relationship between them. To address this issue, we propose a dynamic relevance learning model, which utilizes the relationship between all support images and Region of Interest (RoI) on the query images to construct a dynamic graph convolutional network (GCN). By adjusting the prediction distribution of the base detector using the output of this GCN, the proposed model can guide the detector to improve the class representation implicitly. Comprehensive experiments have been conducted on Pascal VOC and MS-COCO dataset. The proposed model achieves the best overall performance, which shows its effectiveness of learning more generalized features. Our code is available at https://github.com/liuweijie19980216/DRL-for-FSOD.
Object detection models perform well at localizing and classifying objects that they are shown during training. However, due to the difficulty and cost associated with creating and annotating detection datasets, trained models detect a limited number of object types with unknown objects treated as background content. This hinders the adoption of conventional detectors in real-world applications like large-scale object matching, visual grounding, visual relation prediction, obstacle detection (where it is more important to determine the presence and location of objects than to find specific types), etc. We propose class-agnostic object detection as a new problem that focuses on detecting objects irrespective of their object-classes. Specifically, the goal is to predict bounding boxes for all objects in an image but not their object-classes. The predicted boxes can then be consumed by another system to perform application-specific classification, retrieval, etc. We propose training and evaluation protocols for benchmarking class-agnostic detectors to advance future research in this domain. Finally, we propose (1) baseline methods and (2) a new adversarial learning framework for class-agnostic detection that forces the model to exclude class-specific information from features used for predictions. Experimental results show that adversarial learning improves class-agnostic detection efficacy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا