ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of hybrid node and link communities in complex networks

240   0   0.0 ( 0 )
 نشر من قبل Dongxiao He
 تاريخ النشر 2013
والبحث باللغة English




اسأل ChatGPT حول البحث

Identification of communities in complex networks has become an effective means to analysis of complex systems. It has broad applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network structure analysis. These schemes, however, have inherent drawbacks and are often inadequate to properly capture complex organizational structures in real networks. We introduce a new scheme and effective approach for identifying complex network structures using a mixture of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large semantic association network of commonly used words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.



قيم البحث

اقرأ أيضاً

76 - Cunlai Pu , Jie Li , Jian Wang 2017
Over the years, quantifying the similarity of nodes has been a hot topic in complex networks, yet little has been known about the distributions of node-similarity. In this paper, we consider a typical measure of node-similarity called the common neig hbor based similarity (CNS). By means of the generating function, we propose a general framework for calculating the CNS distributions of node sets in various complex networks. In particular, we show that for the Erd{o}s-R{e}nyi (ER) random network, the CNS distribution of node sets of any particular size obeys the Poisson law. We also connect the node-similarity distribution to the link prediction problem. We found that the performance of link prediction depends solely on the CNS distributions of the connected and unconnected node pairs in the network. Furthermore, we derive theoretical solutions of two key evaluation metrics in link prediction: i) precision and ii) area under the receiver operating characteristic curve (AUC). We show that for any link prediction method, if the similarity distributions of the connected and unconnected node pairs are identical, the AUC will be $0.5$. The theoretical solutions are elegant alternatives of the traditional experimental evaluation methods with nevertheless much lower computational cost.
The conventional notion of community that favors a high ratio of internal edges to outbound edges becomes invalid when each vertex participates in multiple communities. Such a behavior is commonplace in social networks. The significant overlaps among communities make most existing community detection algorithms ineffective. The lack of effective and efficient tools resulted in very few empirical studies on large-scale detection and analyses of overlapping community structure in real social networks. We developed recently a scalable and accurate method called the Partial Community Merger Algorithm (PCMA) with linear complexity and demonstrated its effectiveness by analyzing two online social networks, Sina Weibo and Friendster, with 79.4 and 65.6 million vertices, respectively. Here, we report in-depth analyses of the 2.9 million communities detected by PCMA to uncover their complex overlapping structure. Each community usually overlaps with a significant number of other communities and has far more outbound edges than internal edges. Yet, the communities remain well separated from each other. Most vertices in a community are multi-membership vertices, and they can be at the core or the peripheral. Almost half of the entire network can be accounted for by an extremely dense network of communities, with the communities being the vertices and the overlaps being the edges. The empirical findings ask for rethinking the notion of community, especially the boundary of a community. Realizing that it is how the edges are organized that matters, the f-core is suggested as a suitable concept for overlapping community in social networks. The results shed new light on the understanding of overlapping community.
Community detection and link prediction are both of great significance in network analysis, which provide very valuable insights into topological structures of the network from different perspectives. In this paper, we propose a novel community detec tion algorithm with inclusion of link prediction, motivated by the question whether link prediction can be devoted to improving the accuracy of community partition. For link prediction, we propose two novel indices to compute the similarity between each pair of nodes, one of which aims to add missing links, and the other tries to remove spurious edges. Extensive experiments are conducted on benchmark data sets, and the results of our proposed algorithm are compared with two classes of baseline. In conclusion, our proposed algorithm is competitive, revealing that link prediction does improve the precision of community detection.
Many real networks that are inferred or collected from data are incomplete due to missing edges. Missing edges can be inherent to the dataset (Facebook friend links will never be complete) or the result of sampling (one may only have access to a port ion of the data). The consequence is that downstream analyses that consume the network will often yield less accurate results than if the edges were complete. Community detection algorithms, in particular, often suffer when critical intra-community edges are missing. We propose a novel consensus clustering algorithm to enhance community detection on incomplete networks. Our framework utilizes existing community detection algorithms that process networks imputed by our link prediction based algorithm. The framework then merges their multiple outputs into a final consensus output. On average our method boosts performance of existing algorithms by 7% on artificial data and 17% on ego networks collected from Facebook.
157 - Zhihao Wu , Youfang Lin , Yao Zhao 2015
Link prediction in complex network based on solely topological information is a challenging problem. In this paper, we propose a novel similarity index, which is efficient and parameter free, based on clustering ability. Here clustering ability is de fined as average clustering coefficient of nodes with the same degree. The motivation of our idea is that common-neighbors are able to contribute to the likelihood of forming a link because they own some ability of clustering their neighbors together, and then clustering ability defined here is a measure for this capacity. Experimental numerical simulations on both real-world networks and modeled networks demonstrated the high accuracy and high efficiency of the new similarity index compared with three well-known common-neighbor based similarity indices: CN, AA and RA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا