ترغب بنشر مسار تعليمي؟ اضغط هنا

Building an Emulation Environment for Cyber Security Analyses of Complex Networked Systems

161   0   0.0 ( 0 )
 نشر من قبل Mara Sorella
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Computer networks are undergoing a phenomenal growth, driven by the rapidly increasing number of nodes constituting the networks. At the same time, the number of security threats on Internet and intranet networks is constantly growing, and the testing and experimentation of cyber defense solutions requires the availability of separate, test environments that best emulate the complexity of a real system. Such environments support the deployment and monitoring of complex mission-driven network scenarios, thus enabling the study of cyber defense strategies under real and controllable traffic and attack scenarios. In this paper, we propose a methodology that makes use of a combination of techniques of network and security assessment, and the use of cloud technologies to build an emulation environment with adjustable degree of affinity with respect to actual reference networks or planned systems. As a byproduct, starting from a specific study case, we collected a dataset consisting of complete network traces comprising benign and malicious traffic, which is feature-rich and publicly available.



قيم البحث

اقرأ أيضاً

Information sharing is vital in resisting cyberattacks, and the volume and severity of these attacks is increasing very rapidly. Therefore responders must triage incoming warnings in deciding how to act. This study asked a very specific question: how can the addition of confidence information to alerts and warnings improve overall resistance to cyberattacks. We sought, in particular, to identify current practices, and if possible, to identify some best practices. The research involved literature review and interviews with subject matter experts at every level from system administrators to persons who develop broad principles of policy. An innovative Modified Online Delphi Panel technique was used to elicit judgments and recommendations from experts who were able to speak with each other and vote anonymously to rank proposed practices.
Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this pote ntial is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This paper is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this paper, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area.
Data Loss/Leakage Prevention (DLP) continues to be the main issue for many large organizations. There are multiple numbers of emerging security attach scenarios and a limitless number of overcoming solutions. Todays enterprises major concern is to pr otect confidential information because a leakage that compromises confidential data means that sensitive information is in competitors hands. Different data types need to be protected. However, our research is focused only on data in motion (DIM) i-e data transferred through the network. The research and scenarios in this paper demonstrate a recent survey on information and data leakage incidents, which reveals its importance and also proposed a model solution that will offer the combination of previous methodologies with a new way of pattern matching by advanced content checker based on the use of machine learning to protect data within an organization and then take actions accordingly. This paper also proposed a DLP deployment design on the gateway level that shows how data is moving through intermediate channels before reaching the final destination using the squid proxy server and ICAP server.
Electric power grids are at risk of being compromised by high-impact cyber-security threats such as coordinated, timed attacks. Navigating this new threat landscape requires a deep understanding of the potential risks and complex attack processes in energy information systems, which in turn demands an unmanageable manual effort to timely process a large amount of cross-domain information. To provide an adequate basis to contextually assess and understand the situation of smart grids in case of coordinated cyber-attacks, we need a systematic and coherent approach to identify cyber incidents. In this paper, we present an approach that collects and correlates cross-domain cyber threat information to detect multi-stage cyber-attacks in energy information systems. We investigate the applicability and performance of the presented correlation approach and discuss the results to highlight challenges in domain-specific detection mechanisms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا