ترغب بنشر مسار تعليمي؟ اضغط هنا

The 3D thermal, dynamical and chemical structure of the atmosphere of HD 189733b: implications of wind-driven chemistry for the emission phase curve

122   0   0.0 ( 0 )
 نشر من قبل Benjamin Drummond Dr
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we present three-dimensional atmospheric simulations of the hot Jupiter HD~189733b under two different scenarios: local chemical equilibrium and including advection of the chemistry by the resolved wind. Our model consistently couples the treatment of dynamics, radiative transfer and chemistry, completing the feedback cycle between these three important processes. The effect of wind--driven advection on the chemical composition is qualitatively similar to our previous results for the warmer atmosphere of HD~209458b, found using the same model. However, we find more significant alterations to both the thermal and dynamical structure for the cooler atmosphere of HD~189733b, with changes in both the temperature and wind velocities reaching $sim10%$. We also present the contribution function, diagnosed from our simulations, and show that wind--driven chemistry has a significant impact on its three--dimensional structure, particularly for regions where methane is an important absorber. Finally, we present emission phase curves from our simulations and show the significant effect of wind--driven chemistry on the thermal emission, particularly within the 3.6 textmu m Spitzer/IRAC channel.

قيم البحث

اقرأ أيضاً

We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 micron bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 a nd 24 micron, these data allow us to characterize the exoplanets emission spectrum as a function of planetary longitude. We utilize improved methods for removing the effects of intrapixel sensitivity variations and accounting for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% +/- 0.0061% in the 3.6 micron band and 0.0982% +/- 0.0089% in the 4.5 micron band. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 micron, and we present new evidence indicating that the flux minimum observed in the 8 micron is likely caused by an over-shooting effect in the 8 micron array. We obtain improved estimates for HD 189733bs dayside planet-star flux ratio of 0.1466% +/- 0.0040% at 3.6 micron and 0.1787% +/- 0.0038% at 4.5 micron; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of models from Burrows et al. (2008) and Showman et al. (2009). We find that HD 189733bs 4.5 micron nightside flux is 3.3 sigma smaller than predicted by the Showman et al. models, which assume that the chemistry is in local thermal equilibrium. We conclude that this discrepancy is best-explained by vertical mixing, which should lead to an excess of CO and correspondingly enhanced 4.5 micron absorption in this region. [abridged]
We use signal enhancement techniques and a matched filter analysis to search for the K band spectroscopic absorption signature of the close orbiting extrasolar giant planet, HD 189733b. With timeseries observations taken with NIRSPEC at the Keck II t elescope, we investigate the relative abundances of H2O and carbon bearing molecules, which have now been identified in the dayside spectrum of HD 189733b. We detect a candidate planet signature with a low level of significance, close to the ~153 km/s velocity amplitude of HD 189733b. However, some systematic variations, mainly due to imperfect telluric line removal, remain in the residual spectral timeseries in which we search for the planetary signal. The robustness of our candidate signature is assessed, enabling us to conclude that it is not possible to confirm the presence of any planetary signal which appears at Fp/F* contrasts deeper than the 95.4 per cent confidence level. Our search does not enable us to detect the planet at a contrast ratio of Fp/F* = 1/1920 with 99.9 per cent confidence. We also investigate the effect of model uncertainties on our ability to reliably recover a planetary signal. The use of incorrect temperature, model opacity wavelengths and model temperature-pressure profiles have important consequences for the least squares deconvolution procedure that we use to boost the S/N ratio in our spectral timeseries observations. We find that mismatches between the empirical and model planetary spectrum may weaken the significance of a detection by ~30-60 per cent, thereby potentially impairing our ability to recover a planetary signal with high confidence.
We present the detection and characterization of the full-orbit phase curve and secondary eclipse of the ultra-hot Jupiter WASP-33b at optical wavelengths, along with the pulsation spectrum of the host star. We analyzed data collected by the Transiti ng Exoplanet Survey Satellite (TESS) in sector 18. WASP-33b belongs to a very short list of highly irradiated exoplanets that were discovered from the ground and were later visited by TESS. The host star of WASP-33b is of delta Scuti-type and shows nonradial pulsations in the millimagnitude regime, with periods comparable to the period of the primary transit. These completely deform the photometric light curve, which hinders our interpretations. By carrying out a detailed determination of the pulsation spectrum of the host star, we find 29 pulsation frequencies with a signal-to-noise ratio higher than 4. After cleaning the light curve from the stellar pulsations, we confidently report a secondary eclipse depth of 305.8 +/- 35.5 parts-per-million (ppm), along with an amplitude of the phase curve of 100.4 +/- 13.1 ppm and a corresponding westward offset between the region of maximum brightness and the substellar point of 28.7 +/- 7.1 degrees, making WASP-33b one of the few planets with such an offset found so far. Our derived Bond albedo, A_B = 0.369 +/- 0.050, and heat recirculation efficiency, epsilon = 0.189 +/- 0.014, confirm again that he behavior of WASP-33b is similar to that of other hot Jupiters, despite the high irradiation received from its host star. By connecting the amplitude of the phase curve to the primary transit and depths of the secondary eclipse, we determine that the day- and nightside brightness temperatures of WASP-33b are 3014 +/- 60 K and 1605 +/- 45 K, respectively. From the detection of photometric variations due to gravitational interactions, we estimate a planet mass of M_P = 2.81 +/- 0.53 M$_J.
154 - T.M. Rogers , A.P. Showman 2014
We present the first three-dimensional magnetohydrodynamic (MHD) simulations of the atmosphere of HD 209458b which self-consistently include reduction of winds due to the Lorentz force and Ohmic heating. We find overall wind structures similar to tha t seen in previous models of hot Jupiter atmospheres, with strong equatorial jets and meridional flows poleward near the day side and equatorward near the night side. Inclusion of magnetic fields slows those winds and leads to Ohmic dissipation. We find wind slowing ranging from 10%-40% for reasonable field strengths. We find Ohmic dissipation rates ~10^17 W at 100 bar, orders of magnitude too small to explain the inflated radius of this planet. Faster wind speeds, not achievable in these anelastic calculations, may be able to increase this value somewhat, but likely will not be able to close the gap necessary to explain the inflated radius. We demonstrate that the discrepancy between the simulations presented here and previous models is due to inadequate treatment of magnetic field geometry and evolution. Induced poloidal fields become much larger than those imposed, highlighting the need for a self-consistent MHD treatment of these hot atmospheres.
The hot Jupiter HD189733b is the most extensively observed exoplanet. Its atmosphere has been detected and characterised in transmission and eclipse spectroscopy, and its phase curve measured at several wavelengths. This paper brings together results of our campaign to obtain the complete transmission spectrum of the atmosphere of this planet from UV to IR with HST, using STIS, ACS and WFC3. We provide a new tabulation of the transmission spectrum across the entire visible and IR range. The radius ratio in each wavelength band was rederived to ensure a consistent treatment of the bulk transit parameters and stellar limb-darkening. Special care was taken to correct for, and derive realistic estimates of the uncertainties due to, both occulted and unocculted star spots. The combined spectrum is very different from the predictions of cloud-free models: it is dominated by Rayleigh scattering over the whole visible and near infrared range, the only detected features being narrow Na and K lines. We interpret this as the signature of a haze of condensate grains extending over at least 5 scale heights. We show that a dust-dominated atmosphere could also explain several puzzling features of the emission spectrum and phase curves, including the large amplitude of the phase curve at 3.6um, the small hot-spot longitude shift and the hot mid-infrared emission spectrum. We discuss possible compositions and derive some first-order estimates for the properties of the putative condensate haze/clouds. We finish by speculating that the dichotomy between the two observationally defined classes of hot Jupiter atmospheres, of which HD189733b and HD209458b are the prototypes, might not be whether they possess a temperature inversion, but whether they are clear or dusty. We also consider the possibility of a continuum of cloud properties between hot Jupiters, young Jupiters and L-type brown dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا