ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principles studies of spin-orbital physics in pyrochlore oxides

68   0   0.0 ( 0 )
 نشر من قبل Hiroshi Shinaoka
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pyrochlore oxides $A_2B_2$O$_7$ exhibit a complex interplay between geometrical frustration, electronic correlations, and spin-orbit coupling, due to the lattice structure and active charge, spin, and orbital degrees of freedom. Understanding the properties of these materials is a theoretical chalenge, because their intricate nature depends on material-specific details and quantum many-body effects. Here we review our recent studies based on first-principles calculations and quantum many-body theories for 4$d$ and 5$d$ pyrochlore oxides with $B$=Mo, Os, and Ir. In these studies, the spin-orbit coupling and local electron correlations are treated within the LDA+$U$ and LDA+dynamical mean-field theory formalisms. We also discuss the technical aspects of these calculations.



قيم البحث

اقرأ أيضاً

90 - L. Petit , A. Svane , Z. Szotek 2005
The self-interaction-corrected local-spin-density approximation is used to describe the electronic structure of dioxides, REO$_2$, and sesquioxides, RE$_2$O$_3$, for the rare earths, RE=Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy and Ho. The valencies of the rare earth ions are determined from total energy minimization. We find Ce, Pr, Tb in their dioxides to have the tetravalent configuration, while for all the sesquioxides the trivalent groundstate configuration is found to be the most favourable. The calculated lattice constants for these valency configurations are in good agreement with experiment. Total energy considerations are exploited to show the link between oxidation and $f$-electron delocalization, and explain why, among the dioxides, only the CeO$_2$, PrO$_2$, and TbO$_2$ exist in nature. Tetravalent NdO$_2$ is predicted to exist as a metastable phase - unstable towards the formation of hexagonal Nd$_2$O$_3$.
The interplay of spin-orbit interactions and Coulomb correlations has become a hot topic in condensed matter theory. Here, we review recent advances in dynamical mean-field theory-based electronic structure calculations for iridates and rhodates. We stress the notion of the effective degeneracy of the compounds, which introduces an additional axis into the conventional picture of a phase diagram based on filling and on the ratio of interactions to bandwidth.
Present work demonstrates the formation of spin-orbital polarons in electron doped copper oxides, that arise due to doping-induced polarisation of the oxygen orbitals in the CuO$_2$ planes. The concept of such polarons is fundamentally different from previous interpretations. The novel aspect of spin-orbit polarons is best described by electrons becoming self-trapped in one-dimensional channels created by polarisation of the oxygen orbitals. The one-dimensional channels form elongated filaments with two possible orientations, along the diagonals of the elementary CuO$_2$ square plaquette. As the density of doped electrons increases multiple filaments are formed. These may condense into a single percollating filamentary phase. Alternatively, the filaments may cross perpendicularly to create an interconnected conducting quasi-one-dimensional web. At low electron doping the antiferromagnetic (AFM) state and the polaron web coexist. As the doping is increased the web of filaments modifies and transforms the AFM correlations leading to a series of quantum phase transitions - which affect the normal and superconducting state properties.
147 - L. Petit , A. Svane , Z. Szotek 2009
The ground state electronic structures of the actinide oxides AO, A2O3 and AO2 (A=U, Np, Pu, Am, Cm, Bk, Cf) are determined from first-principles calculations, using the self-interaction corrected local spin-density (SIC-LSD) approximation. Emphasis is put on the degree of f-electron localization, which for AO2 and A2O3 is found to follow the stoichiometry, namely corresponding to A(4+) ions in the dioxide and A(3+) ions in the sesquioxides. In contrast, the A(2+) ionic configuration is not favorable in the monoxides, which therefore become metallic. The energetics of the oxidation and reduction of the actinide dioxides is discussed, and it is found that the dioxide is the most stable oxide for the actinides from Np onwards. Our study reveals a strong link between preferred oxidation number and degree of localization which is confirmed by comparing to the ground state configurations of the corresponding lanthanide oxides. The ionic nature of the actinide oxides emerges from the fact that only those compounds will form where the calculated ground state valency agrees with the nominal valency expected from a simple charge counting.
Fully relativistic first-principles electronic structure calculations based on a noncollinear local spin density approximation (LSDA) are performed for pyrochlore iridates Y$_2$Ir$_2$O$_7$ and Pr$_2$Ir$_2$O$_7$. The all-in, all-out antiferromagnetic (AF) order is stablized by the on-site Coulomb repulsion $U>U_c$ in the LSDA+$U$ scheme, with $U_csim1.1$~eV and 1.3~eV for Y$_2$Ir$_2$O$_7$ and Pr$_2$Ir$_2$O$_7$, respectively. AF semimetals with and without Weyl points and then a topologically trivial AF insulator successively appear with further increasing $U$. For $U=1.3$~eV, Y$_2$Ir$_2$O$_7$ is a topologically trivial narrow-gap AF insulator having an ordered local magnetic moment $sim0.5mu_B$/Ir, while Pr$_2$Ir$_2$O$_7$ is barely a paramagnetic semimetal with electron and hole concentrations of $0.016$/Ir, in overall agreements with experiments. With decreasing oxygen position parameter $x$ describing the trigonal compression of IrO$_6$ octahedra, Pr$_2$Ir$_2$O$_7$ is driven through a non-Fermi-liquid semimetal having only an isolated Fermi point of $Gamma_8^+$, showing a quadratic band touching, to a $Z_2$ topological insulator.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا