ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards wafer-scale diamond nano- and quantum technologies

248   0   0.0 ( 0 )
 نشر من قبل Richard Nelz
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate native nitrogen (NV) and silicon vacancy (SiV) color centers in commercially available, heteroepitaxial, wafer-sized, mm thick, single-crystal diamond. We observe single, native NV centers with a density of roughly 1 NV per $mu m^3$ and moderate coherence time ($T_2 = 5 mu s$) embedded in an ensemble of SiV centers. Low-temperature spectroscopy of the SiV zero phonon line fine structure witnesses high crystalline quality of the diamond especially close to the growth surface, consistent with a reduced dislocation density. Using ion implantation and plasma etching, we verify the possibility to fabricate nanostructures with shallow color centers rendering our diamond material promising for fabrication of nanoscale sensing devices. As this diamond is available in wafer-sizes up to $100 mm$ it offers the opportunity to up-scale diamond-based device fabrication.

قيم البحث

اقرأ أيضاً

293 - N. Bart , C. Dangel , P. Zajac 2020
Control of the position and density of semiconductor quantum dots (QDs) is vital for a variety of emergent technologies, such as quantum photonics and advanced opto-electronic devices. However, established ordering methods typically call for ex-situ processing prior to growth that have a deleterious impact on the optical quality of nanostructures. Here, we apply a conventional epitaxial growth method - molecular beam epitaxy (MBE) - to achieve wafer scale positioning of optically active QDs with high reproducibility, tunable periodicity, and controlled density across an entire unpatterned 3-inch semiconductor wafer. Hereby, we exploit material thickness gradients across the wafer to modulate the QD nucleation probability and demonstrate how our approaches can be used to achieve strong periodic modulation of the local dot density tunable over length scales ranging from a few millimeters to at least a few hundred microns in one or two spatial directions. The methods are universal and are applicable to a wide variety of semiconductor material systems.
Ultra-fast femtosecond (fs) lasers provide a unique technological opportunity to precisely and efficiently micromachine materials with minimal thermal damage owing to the reduced heat transfer into the bulk of the work material offered by short pulse duration, high laser intensity and focused optical energy delivered on a timescale shorter than the rate of thermal diffusion into the surrounding area of a beam foci. There is an increasing demand to further develop the fs machining technology to improve the machining quality, minimize the total machining time and increase the flexibility of machining complex patterns on diamond. This article offers an overview of recent research findings on the application of fs laser technology to micromachine diamond. The laser technology to precisely micromachine diamond is discussed and detailed, with a focus on the use of fs laser irradiation systems and their characteristics, laser interaction with various types of diamonds, processing and the subsequent post-processing of the irradiated samples and, appropriate sample characterisation methods. Finally, the current and emerging application areas are discussed, and the challenges and the future research prospects in the fs laser micromachining field are also identified.
Color centers in diamond are versatile solid state atomic-like systems suitable for quantum technological applications. In particular, the negatively charged silicon vacancy center (SiV) can exhibit a narrow photoluminescence (PL) line and lifetime-l imited linewidth in bulk diamonds at cryogenic temperature. We present a low-temperature study of chemical vapour deposition (CVD)-grown diamond nano-pyramids containing SiV centers. The PL spectra feature a bulk-like zero-phonon line with ensembles of SiV centers, with a linewidth below 10 GHz which demonstrates very low crystal strain for such a nano-object.
Diamond has attracted great interest as a quantum technology platform thanks to its optically active nitrogen vacancy center (NV). The NVs ground state spin can be read out optically exhibiting long spin coherence times of about 1 ms even at ambient temperatures. In addition, the energy levels of the NV are sensitive to external fields. These properties make NVs attractive as a scalable platform for efficient nanoscale resolution sensing based on electron spins and for quantum information systems. Diamond photonics enhances optical interaction with NVs, beneficial for both quantum sensing and information. Diamond is also compelling for microfluidic applications due to its outstanding biocompatibility, with sensing functionality provided by NVs. However, it remains a significant challenge to fabricate photonics, NVs and microfluidics in diamond. In this Report, an overview is provided of ion irradiation and femtosecond laser writing, two promising fabrication methods for diamond based quantum technological devices. The unique capabilities of both techniques are described, and the most important fabrication results of color center, optical waveguide and microfluidics in diamond are reported, with an emphasis on integrated devices aiming towards high performance quantum sensors and quantum information systems of tomorrow
Control of the crystalline orientation of nitrogen-vacancy (NV) defects in diamond is here demonstrated by tuning the temperature of chemical vapor deposition (CVD) growth on a (113)-oriented diamond substrate. We show that preferential alignment of NV defects along the [111] axis is significantly improved when the CVD growth temperature is decreased. This effect is then combined with temperature-dependent incorporation of NV defects during the CVD growth to obtain preferential alignment over dense ensembles of NV defects spatially localized in thin diamond layers. These results demonstrate that growth temperature can be exploited as an additional degree of freedom to engineer optimized diamond samples for quantum sensing applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا