ﻻ يوجد ملخص باللغة العربية
The Jackiw-Teitelboim (JT) model arises from the dimensional reduction of charged black holes. Motivated by the holographic complexity conjecture, we calculate the late-time rate of change of action of a Wheeler-DeWitt patch in the JT theory. Surprisingly, the rate vanishes. This is puzzling because it contradicts both holographic expectations for the rate of complexification and also action calculations for charged black holes. We trace the discrepancy to an improper treatment of boundary terms when naively doing the dimensional reduction. Once the boundary term is corrected, we find exact agreement with expectations. We comment on the general lessons that this might hold for holographic complexity and beyond.
In this note we study the $1+1$ dimensional Jackiw-Teitelboim gravity in Lorentzian signature, explicitly constructing the gauge-invariant classical phase space and the quantum Hilbert space and Hamiltonian. We also semiclassically compute the Hartle
In this paper we use the covariant Peierls bracket to compute the algebra of a sizable number of diffeomorphism-invariant observables in classical Jackiw-Teitelboim gravity coupled to fairly arbitrary matter. We then show that many recent results, in
We study the theory of Jackiw-Teitelboim gravity with generalized dilaton potential on Euclidean two-dimensional negatively curved backgrounds. The effect of the generalized dilaton potential is to induce a conical defect on the two-dimensional manif
We formulate AdS_2 higher spin gravity as BF theory with fields taking values in sl(N,R) algebra treated as higher spin algebra. The theory is topological and naturally extends the Jackiw-Teitelboim gravity model so as to include higher spin fields.
We construct the non-relativistic and Carrolli