ﻻ يوجد ملخص باللغة العربية
We formulate AdS_2 higher spin gravity as BF theory with fields taking values in sl(N,R) algebra treated as higher spin algebra. The theory is topological and naturally extends the Jackiw-Teitelboim gravity model so as to include higher spin fields. The BF equations linearized about AdS_2 background are interpreted as describing higher spin partially-massless fields of maximal depth along with dilaton fields. It is shown that there are dual metric-like formulations following from the original linearized BF higher spin theory. The duality establishes a dynamical equivalence of the metric-like field equations that can be given either as massive scalar field equations or as conservation conditions for higher spin currents.
In this note we study the $1+1$ dimensional Jackiw-Teitelboim gravity in Lorentzian signature, explicitly constructing the gauge-invariant classical phase space and the quantum Hilbert space and Hamiltonian. We also semiclassically compute the Hartle
We construct the non-relativistic and Carrolli
In this paper we use the covariant Peierls bracket to compute the algebra of a sizable number of diffeomorphism-invariant observables in classical Jackiw-Teitelboim gravity coupled to fairly arbitrary matter. We then show that many recent results, in
The Jackiw-Teitelboim (JT) model arises from the dimensional reduction of charged black holes. Motivated by the holographic complexity conjecture, we calculate the late-time rate of change of action of a Wheeler-DeWitt patch in the JT theory. Surpris
We study the theory of Jackiw-Teitelboim gravity with generalized dilaton potential on Euclidean two-dimensional negatively curved backgrounds. The effect of the generalized dilaton potential is to induce a conical defect on the two-dimensional manif