ﻻ يوجد ملخص باللغة العربية
In this study we investigate the structural and chemical changes of monatomic CoO$_2$ chains grown self-organized on the Ir(100) surface [P. Ferstl et al., PRL 117, 2016, 046101] and on Pt(100) under reducing and oxidizing conditions. By a combination of quantitative low-energy electron diffraction, scanning tunnelling microscopy, and density functional theory we show that the cobalt oxide wires are completely reduced by H$_2$ at temperatures above 320 K and a 3x1 ordered Ir$_2$Co or Pt$_2$Co surface alloy is formed. Depending on temperature the surface alloy on Ir(100) is either hydrogen covered (T < 400 K) or clean and eventually undergoes an irreversible order-disorder transition at about 570 K. The Pt$_2$Co surface alloy disorders with the desorption of hydrogen, whereby Co submerges into subsurface sites. Vice versa, applying stronger oxidants than O$_2$ such as NO$_2$ leads to the formation of CoO3 chains on Ir(100) in a 3x1 superstructure. On Pt(100) such a CoO$_3$ phase could not be prepared so far, which however, is due to the UHV conditions of our experiments. As revealed by theory this phase will become stable in a regime of higher pressure. In general, the structures can be reversibly switched on both surfaces using the respective agents O$_2$, NO$_2$ and H$_2$.
We have investigated the magnetic ordering in the ultrathin c(10$times$2) CoO(111) film supported on Ir(100) on the basis of ab-initio calculations. We find a close relationship between the local structural properties of the oxide film and the induce
[Ca$_2$CoO$_3$]$_{0.62}$[CoO$_2$], a two dimensional misfit metallic compound, is famous for its rich phases accessed by temperature, $i.e.$ high temperature spin-state transition, metal-insulator transition (MIT) at intermediate temperature ($sim$ 1
The structure and dynamics of atomic oxygen adsorbed on Ag(410) and Ag(210) surfaces have been investigated using density functional theory. Our results show that the adsorption configuration in which O adatoms decorate the upper side of the (110) st
The electric, magnetic, and thermal properties of three perovskite cobaltites with the same 30% hole doping and ferromagnetic ground state were investigated down to very low temperatures. With decreasing size of large cations, the ferromagnetic Curie
The structure and strain of ultrathin CoO films grown on a Pt(001) substrate and on a ferromagnetic PtFe pseudomorphic layer on Pt(001) have been determined with insitu and real time surface x-ray diffraction. The films grow epitaxially on both surfa