ﻻ يوجد ملخص باللغة العربية
We reveal a deep connection between alignment of dust grains by RAdiative torques (RATs) and MEchanical Torques (METs) and rotational disruption of grains introduced by Hoang et al. (2019). The disruption of grains happens if they have attractor points corresponding to high angular momentum (high-J). We introduce {it fast disruption} for grains that are directly driven to the high-J attractor on a timescale of spin-up, and {it slow disruption} for grains that are first moved to the low-J attractor and gradually transported to the high-J attractor by gas collisions. The enhancement of grain magnetic susceptibility via iron inclusions expands the parameter space for high-J attractors and increases percentage of grains experiencing the disruption. The increase in the magnitude of RATs or METs can increase the efficiency of fast disruption, but counter-intuitively, decreases the effect of slow disruption by forcing grains towards low-J attractors, whereas the increase in gas density accelerates disruption by faster transporting grains to the high-J attractor. We also show that disruption induced by RATs and METs depends on the angle between the magnetic field and the anisotropic flow. We find that pinwheel torques can increase the efficiency of {it fast disruption} but may decrease the efficiency of {it slow disruption} by delaying the transport of grains from the low-J to high-J attractors via gas collisions. The selective nature of the rotational disruption opens a possibility of observational testing of grain composition as well as physical processes of grain alignment.
Dust clouds are ubiquitous in the atmospheres of hot Jupiters and affect their observable properties. The alignment of dust grains in the clouds and resulting dust polarization is a promising method to study magnetic fields of exoplanets. Moreover, t
Radiation pressure on dust is thought to play a crucial role in the formation process of massive stars by acting against gravitational collapse onto the central protostar. However, dust properties in dense regions irradiated by the intense radiation
Dust grains are aligned with the interstellar magnetic field and drift through the interstellar medium (ISM). Evolution of interstellar dust is driven by grain motion. In this paper, we study the effect of grain alignment with magnetic fields and gra
We describe a numerical scheme for magnetohydrodynamics simulations of dust-gas mixture by extending smoothed particle magnetohydrodynamics. We employ the single-species particle approach to describe dust-gas mixture with several modifications from t
The dynamics of dust and gas can be quite different from each other when the dust is poorly coupled to the gas. In protoplanetary discs, it is well known that this decoupling of the dust and gas can lead to diverse spatial structures and dust-to-gas