ترغب بنشر مسار تعليمي؟ اضغط هنا

Profile approach for recognition of three-dimensional magnetic structures

47   0   0.0 ( 0 )
 نشر من قبل Vladimir Mazurenko Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an approach for low-dimensional visualisation and classification of complex topological magnetic structures formed in magnetic materials. Within the approach one converts a three-dimensional magnetic configuration to a vector containing the only components of the spins that are parallel to the z axis. The next crucial step is to sort the vector elements in ascending or descending order. Having visualized profiles of the sorted spin vectors one can distinguish configurations belonging to different phases even with the same total magnetization. For instance, spin spiral and paramagnetic states with zero total magnetic moment can be easily identified. Being combined with a simplest neural network our profile approach provides a very accurate phase classification for three-dimensional magnets characterized by complex multispiral states even in the critical areas close to phases transitions. By the example of the skyrmionic configurations we show that profile approach can be used to separate the states belonging to the same phase.



قيم البحث

اقرأ أيضاً

We present single-crystal neutron diffraction measurements on multiferroic LuFe2O4 showing phase transitions at 240 and 175 K. Magnetic reflections are observed below each transition indicating that the magnetic interactions in LuFe2O4 are 3-dimensio nal (3D) in character. The magnetic structure is refined as a ferrimagnetic spin configuration below the 240 K transition. While 3D magnetic correlations persists below 175 K, a significant broadening of the magnetic peaks is observed along with the build up of a diffuse component to the magnetic scattering.
In this study, we systematically investigate 3D momentum($hbar k$)-resolved electronic structures of Ruddlesden-Popper-type iridium oxides Sr$_{n+1}$Ir$_n$O$_{3n+1}$ using soft-x-ray (SX) angle-resolved photoemission spectroscopy (ARPES). Our results provide direct evidence of an insulator-to-metal transition that occurs upon increasing the dimensionality of the IrO$_2$-plane structure. This transition occurs when the spin-orbit-coupled $j_{rm eff}$=1/2 band changes its behavior in the dispersion relation and moves across the Fermi energy. In addition, an emerging band along the $Gamma$(0,0,0)-R($pi$,$pi$,$pi$) direction is found to play a crucial role in the metallic characteristics of SrIrO$_3$. By scanning the photon energy over 350 eV, we reveal the 3D Fermi surface in SrIrO$_3$ and $k_z$-dependent oscillations of photoelectron intensity in Sr$_3$Ir$_2$O$_7$. In contrast to previously reported results obtained using low-energy photons, folded bands derived from lattice distortions and/or magnetic ordering make significantly weak (but finite) contributions to the $k$-resolved photoemission spectrum. At the first glance, this leads to the ambiguous result that the observed $k$-space topology is consistent with the unfolded Brillouin zone (BZ) picture derived from a non-realistic simple square or cubic Ir lattice. Through careful analysis, we determine that a superposition of the folded and unfolded band structures has been observed in the ARPES spectra obtained using photons in both ultraviolet and SX regions. To corroborate the physics deduced using low-energy ARPES studies, we propose to utilize SX-ARPES as a powerful complementary technique, as this method surveys more than one whole BZ and provides a panoramic view of electronic structures.
We report on experimental data of the three-dimensional bulk Fermi surfaces of the layered strongly correlated Ca1.5Sr0.5RuO4 system. The measurements have been performed by means of hn-depndent bulk-sensitive soft x-ray angle-resolved photoemission technique. Our experimental data evinces the bulk Fermi surface topology at kz~0 to be qualitatively different from the one observed by surface-sensitive low-energy ARPES. Furthermore, stronger kz dispersion of the circle-like gamma Fermi surface sheet is observed compared with Sr2RuO4. Thus in the paramagnetic metal phase, Ca1.5Sr0.5RuO4 compound is found to have rather three-dimensional electronic structure.
We study a question of presence of Kohn points, yielding at low temperatures non-analytic momentum dependence of magnetic susceptibility near its maximum, in electronic spectum of some three-dimensional systems. In particular, we consider one-band mo del on face centered cubic lattice with hopping between nearest and next-nearest neighbors, which models some aspects of the dispersion of ZrZn$_2$, and the two-band model on body centered cubic lattice, modeling the dispersion of chromium. For the former model it is shown that Kohn points yielding maxima of susceptibility exist in a certain (sufficiently wide) region of electronic concentrations; the dependence of the wave vectors, corresponding to the maxima, on the chemical potential is investigated. For the two-band model we show existence of the lines of Kohn points, yielding maximum of the susceptibility, which position agrees with the results of band structure calculations and experimental data on the wave vector of antiferromagnetism of chromium.
Graphite, with many industrial applications, is one of the widely sought-after allotropes of carbon. The sp2 hybridized and thermodynamically stable form of carbon forms a layered structure with strong in-plane carbon bonds and weak inter-layer van d er Waals bonding. Graphite is also a high-temperature ceramic, and shaping them into complex geometries is challenging, given its limited sintering behavior even at high temperatures. Although the geometric design of the graphite structure in many of the applications could dictate its precision performance, conventional synthesis methods for formulating complex geometric graphite shapes are limited due to the intrinsic brittleness and difficulties of high-temperature processing. Here, we report the development of colloidal graphite ink from commercial graphite powders with reproducible rheological behavior that allows the fabrication of any complex architectures with tunable geometry and directionality via 3D printing at room temperature. The method is enabled via using small amounts of clay, another layered material, as an additive, allowing the proper design of the graphene ink and subsequent binding of graphite platelets during printing. Sheared layers of clay are easily able to flow, adapt, and interface with graphite layers forming strong binding between the layers and between particles that make the larger structures. The direct ink printing of complex 3D architectures of graphite without further heat treatments could lead to easy shape engineering and related applications of graphite at various length scales, including complex graphite molds or crucibles. The 3D printed complex graphitic structures exhibit excellent thermal, electrical, and mechanical properties, and the clay additive does not seem to alter these properties due to the excellent inter-layer dispersion and mixing within the graphite material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا