ﻻ يوجد ملخص باللغة العربية
The persistent homology analysis is applied to the effective Polyakov-line model on a rectangular lattice to investigate the confinement-deconfinement nature. The lattice data are mapped onto the complex Polyakov-line plane without taking the spatial average and then the plane is divided into three domains. This study is based on previous studies for the clusters and the percolation properties in lattice QCD, but the mathematical method of the analyses are different. The spatial distribution of the data in the individual domain is analyzed by using the persistent homology to obtain information of the multiscale structure of center clusters. In the confined phase, the data in the three domains show the same topological tendency characterized by the birth and death times of the holes which are estimated via the filtration of the alpha complexes in the data space, but do not in the deconfined phase. By considering the configuration averaged ratio of the birth and death times of holes, we can construct the nonlocal order-parameter of the confinement-deconfinement transition from the multiscale topological properties of center clusters.
The isospin chemical potential region is known as the sign-problem free region of quantum chromodynamics (QCD). In this paper, we introduce the isospin chemical potential to the three-dimensional three-state Potts model to mimic the dense QCD; e.g.,
As an effective model corresponding to $Z_3$-symmetric QCD ($Z_3$-QCD), we construct a $Z_3$-symmetric effective Polyakov-line model ($Z_3$-EPLM) by using the logarithmic fermion effective action. Since $Z_3$-QCD tends to QCD in the zero temperature
We present possible indications for flavor separation during the QCD crossover transition based on continuum extrapolated lattice QCD calculations of higher order susceptibilities. We base our findings on flavor specific quantities in the light and s
Three-quark potentials are studied in great details in the three-dimensional $SU(3)$ pure gauge theory at finite temperature, for the cases of static sources in the fundamental and adjoint representations. For this purpose, the corresponding Polyakov
We simulate SU(2) gauge theory at temperatures ranging from slightly below $T_c$ to roughly $2T_c$ for two different values of the gauge coupling. Using a histogram method, we extract the effective potential for the Polyakov loop and for the phases o