ﻻ يوجد ملخص باللغة العربية
Three-quark potentials are studied in great details in the three-dimensional $SU(3)$ pure gauge theory at finite temperature, for the cases of static sources in the fundamental and adjoint representations. For this purpose, the corresponding Polyakov loop model in its simplest version is adopted. The potentials in question, as well as the conventional quark--anti-quark potentials, are calculated numerically both in the confinement and deconfinement phases. Results are compared to available analytical predictions at strong coupling and in the limit of large number of colors $N$. The three-quark potential is tested against the expected $Delta$ and $Y$ laws and the $3q$ string tension entering these laws is compared to the conventional $qbar{q}$ string tension. As a byproduct of this investigation, essential features of the critical behaviour across the deconfinement transition are elucidated.
We simulate SU(2) gauge theory at temperatures ranging from slightly below $T_c$ to roughly $2T_c$ for two different values of the gauge coupling. Using a histogram method, we extract the effective potential for the Polyakov loop and for the phases o
We compare SU(2) Polyakov loop models with different effective actions with data from full two-color QCD simulations around and above the critical temperature. We then apply the effective theories at finite temperature and density to extract quantiti
Lattice gauge theories are fundamental to our understanding of high-energy physics. Nevertheless, the search for suitable platforms for their quantum simulation has proven difficult. We show that the Abelian Higgs model in 1+1 dimensions is a prime c
We apply the liquid droplet model to describe the clustering phenomenon in SU(2) gluodynamics, especially, in the vicinity of the deconfinement phase transition. In particular, we analyze the size distributions of clusters formed by the Polyakov loop
The $SU(3)$ spin model with chemical potential corresponds to a simplified version of QCD with static quarks in the strong coupling regime. It has been studied previously as a testing ground for new methods aiming to overcome the sign problem of latt