ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-quark potentials in an $SU(3)$ effective Polyakov loop model

102   0   0.0 ( 0 )
 نشر من قبل Alessandro Papa
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Three-quark potentials are studied in great details in the three-dimensional $SU(3)$ pure gauge theory at finite temperature, for the cases of static sources in the fundamental and adjoint representations. For this purpose, the corresponding Polyakov loop model in its simplest version is adopted. The potentials in question, as well as the conventional quark--anti-quark potentials, are calculated numerically both in the confinement and deconfinement phases. Results are compared to available analytical predictions at strong coupling and in the limit of large number of colors $N$. The three-quark potential is tested against the expected $Delta$ and $Y$ laws and the $3q$ string tension entering these laws is compared to the conventional $qbar{q}$ string tension. As a byproduct of this investigation, essential features of the critical behaviour across the deconfinement transition are elucidated.

قيم البحث

اقرأ أيضاً

We simulate SU(2) gauge theory at temperatures ranging from slightly below $T_c$ to roughly $2T_c$ for two different values of the gauge coupling. Using a histogram method, we extract the effective potential for the Polyakov loop and for the phases o f the eigenvalues of the thermal Wilson loop, in both the fundamental and adjoint representations. We show that the classical potential of the fundamental loop can be parametrized within a simple model which includes a Vandermonde potential and terms linear and quadratic in the Polyakov loop. We discuss how parametrizations for the other cases can be obtained from this model.
We compare SU(2) Polyakov loop models with different effective actions with data from full two-color QCD simulations around and above the critical temperature. We then apply the effective theories at finite temperature and density to extract quantiti es like Polyakov loop correlators, effective Polyakov loop potentials and baryon density.
Lattice gauge theories are fundamental to our understanding of high-energy physics. Nevertheless, the search for suitable platforms for their quantum simulation has proven difficult. We show that the Abelian Higgs model in 1+1 dimensions is a prime c andidate for an experimental quantum simulation of a lattice gauge theory. To this end, we use a discrete tensor reformulation to smoothly connect the space-time isotropic version used in most numerical lattice simulations to the continuous-time limit corresponding to the Hamiltonian formulation. The eigenstates of the Hamiltonian are neutral for periodic boundary conditions, but we probe the nonzero charge sectors by either introducing a Polyakov loop or an external electric field. In both cases we obtain universal functions relating the mass gap, the gauge coupling, and the spatial size which are invariant under the deformation of the temporal lattice spacing. We propose to use a physical multi-leg ladder of atoms trapped in optical lattices and interacting with Rydberg-dressed interactions to quantum simulate the model and check the universal features. Our results provide a path to the analog quantum simulation of lattice gauge theories with atoms in optical lattices.
We apply the liquid droplet model to describe the clustering phenomenon in SU(2) gluodynamics, especially, in the vicinity of the deconfinement phase transition. In particular, we analyze the size distributions of clusters formed by the Polyakov loop s of the same sign. Within such an approach this phase transition can be considered as the transition between two types of liquids where one of the liquids (the largest droplet of a certain Polyakov loop sign) experiences a condensation, while the other one (the next to largest droplet of opposite Polyakov loop sign) evaporates. The clusters of smaller sizes form two accompanying gases, and their size distributions are described by the liquid droplet parameterization. By fitting the lattice data we have extracted the value of Fisher exponent $tau =$ 1.806 $pm$ 0.008. Also we found that the temperature dependences of the surface tension of both gaseous clusters are entirely different below and above the phase transition and, hence, they can serve as an order parameter. The critical exponents of the surface tension coefficient in the vicinity of the phase transition are found. Our analysis shows that the temperature dependence of the surface tension coefficient above the critical temperature has a $T^2$ behavior in one gas of clusters and $T^4$ in the other one.
The $SU(3)$ spin model with chemical potential corresponds to a simplified version of QCD with static quarks in the strong coupling regime. It has been studied previously as a testing ground for new methods aiming to overcome the sign problem of latt ice QCD. In this work we show that the equation of state and the phase structure of the model can be determined to reasonable accuracy by a linked cluster expansion. In particular, we compute the free energy to 14-th order in the nearest neighbour coupling. The resulting predictions for the equation of state and the location of the critical end point agree with numerical determinations to ${cal O}(1%)$ and ${cal O}(10%)$, respectively. While the accuracy for the critical couplings is still limited at the current series depth, the approach is equally applicable at zero and non-zero imaginary or real chemical potential, as well as to effective QCD Hamiltonians obtained by strong coupling and hopping expansions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا