ﻻ يوجد ملخص باللغة العربية
The goal of this science case is to study physical conditions of the interstellar medium (ISM) in distant galaxies. In particular, its densest component is associated with the inner cores of clouds -- this is where star formation takes place. Carbon monoxide is usually used to trace molecular gas emission; however, its transitions are practically opaque, thus preventing astronomers from piercing through the clouds, into the deepest layers that are most intimately connected with the formation of stars. Other dense gas tracers are required, although they are typically too faint and/or at too low frequencies to be effectively observed in high redshift galaxies. The ngVLA will offer for the first time the sensitivity at radio frequencies that is needed to target [CI]$_{1-0}$ (at $z>5$), as well as the ground transitions of dense gas tracers of the ISM such as HCN, HNC, HCO+ (at various redshifts $z>1$), beyond the tip of the iceberg of the hyper-luminous sources that could be studied up to now. These new tools will critically contribute to our understanding of the intimate interplay between gas clouds and star formation in different environments and cosmic epochs.
The goal of this science case is to accurately pin down the molecular gas content of high redshift galaxies. By targeting the CO ground transition, we circumvent uncertainties related to CO excitation. The ngVLA can observe the CO(1-0) line at virtua
The goal of this science case is to address the use of a ngVLA as a CO redshift machine for dust-obscured high-redshift galaxies which lack of clear counterparts at other wavelengths. Thanks to its unprecedentedly large simultaneous bandwidth and sen
The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will p
Planets assemble in the midplanes of protoplanetary disks. The compositions of dust and gas in the disk midplane region determine the compositions of nascent planets, including their chemical hospitality to life. In this context, the distributions of
Stars form in cold clouds of predominantly molecular (H2) gas. We are just beginning to understand how the formation, properties, and destruction of these clouds varies across the universe. In this chapter, we describe how the thermal line imaging ca