ﻻ يوجد ملخص باللغة العربية
The goal of this science case is to address the use of a ngVLA as a CO redshift machine for dust-obscured high-redshift galaxies which lack of clear counterparts at other wavelengths. Thanks to its unprecedentedly large simultaneous bandwidth and sensitivity, the ngVLA will be able to detect low--J CO transitions at virtually any $z>1$. In particular, at $z>4.76$ two CO transitions will be covered in a single frequency setting, thus ensuring unambiguous line identification. The ngVLA capabilities fill in a redshift range where other approaches (e.g., photometric redshifts, search for optical/radio counterparts, etc) typically fail due to the combination of intrinsically faint emission and increasing luminosity distance. This will allow us to explore the formation of massive galaxies in the early cosmic times.
The goal of this science case is to accurately pin down the molecular gas content of high redshift galaxies. By targeting the CO ground transition, we circumvent uncertainties related to CO excitation. The ngVLA can observe the CO(1-0) line at virtua
The goal of this science case is to study physical conditions of the interstellar medium (ISM) in distant galaxies. In particular, its densest component is associated with the inner cores of clouds -- this is where star formation takes place. Carbon
The next generation Very Large Array (ngVLA) will revolutionize our understanding of the distant Universe via the detection of cold molecular gas in the first galaxies. Its impact on studies of galaxy characterization via detailed gas dynamics will p
Stars form in cold clouds of predominantly molecular (H2) gas. We are just beginning to understand how the formation, properties, and destruction of these clouds varies across the universe. In this chapter, we describe how the thermal line imaging ca
Planets assemble in the midplanes of protoplanetary disks. The compositions of dust and gas in the disk midplane region determine the compositions of nascent planets, including their chemical hospitality to life. In this context, the distributions of