ﻻ يوجد ملخص باللغة العربية
Holistic person re-identification (ReID) has received extensive study in the past few years and achieves impressive progress. However, persons are often occluded by obstacles or other persons in practical scenarios, which makes partial person re-identification non-trivial. In this paper, we propose a spatial-channel parallelism network (SCPNet) in which each channel in the ReID feature pays attention to a given spatial part of the body. The spatial-channel corresponding relationship supervises the network to learn discriminative feature for both holistic and partial person re-identification. The single model trained on four holistic ReID datasets achieves competitive accuracy on these four datasets, as well as outperforms the state-of-the-art methods on two partial ReID datasets without training.
In real-world video surveillance applications, person re-identification (ReID) suffers from the effects of occlusions and detection errors. Despite recent advances, occlusions continue to corrupt the features extracted by state-of-art CNN backbones,
In this work, we present a Multi-Channel deep convolutional Pyramid Person Matching Network (MC-PPMN) based on the combination of the semantic-components and the color-texture distributions to address the problem of person re-identification. In parti
Most of current person re-identification (ReID) methods neglect a spatial-temporal constraint. Given a query image, conventional methods compute the feature distances between the query image and all the gallery images and return a similarity ranked t
Partial person re-identification (re-id) is a challenging problem, where only several partial observations (images) of people are available for matching. However, few studies have provided flexible solutions to identifying a person in an image contai
In this work, we present a deep convolutional pyramid person matching network (PPMN) with specially designed Pyramid Matching Module to address the problem of person re-identification. The architecture takes a pair of RGB images as input, and outputs