ﻻ يوجد ملخص باللغة العربية
We experimentally realize protocols that allow to extract work beyond the free energy difference from a single electron transistor at the single thermodynamic trajectory level. With two carefully designed out-of-equilibrium driving cycles featuring kicks of the control parameter, we demonstrate work extraction up to large fractions of $k_BT$ or with probabilities substantially greater than 1/2, despite zero free energy difference over the cycle. Our results are explained in the framework of nonequilibrium fluctuation relations. We thus show that irreversibility can be used as a resource for optimal work extraction even in the absence of feedback from an external operator.
Work extraction from the Gibbs ensemble by a cyclic operation is impossible, as represented by the second law of thermodynamics. On the other hand, the eigenstate thermalization hypothesis (ETH) states that just a single energy eigenstate can describ
We apply Pontryagins principle to drive rapidly a trapped overdamped Brownian particle in contact with a thermal bath between two equilibrium states corresponding to different trap stiffness $kappa$. We work out the optimal time dependence $kappa(t)$
We discuss work extraction from classical information engines (e.g., Szilard) with $N$-particles, $q$ partitions, and initial arbitrary non-equilibrium states. In particular, we focus on their {em optimal} behaviour, which includes the measurement of
Extensions of statistical mechanics are routinely being used to infer free energies from the work performed over single-molecule nonequilibrium trajectories. A key element of this approach is the ubiquitous expression dW/dt=partial H(x,t)/ partial t
We study the entropy and information flow in a Maxwell demon device based on a single-electron transistor with controlled gate potentials. We construct the protocols for measuring the charge states and manipulating the gate voltages which minimizes i