ﻻ يوجد ملخص باللغة العربية
We prove {rm (i)} Nichols algebra $mathfrak B(V)$ of vector space $V$ is finite-dimensional if and only if Nichols braided Lie algebra $mathfrak L(V)$ is finite-dimensional; {rm (ii)} If the rank of connected $V$ is $2$ and $mathfrak B(V)$ is an arithmetic root system, then $mathfrak B(V) = F oplus mathfrak L(V);$ and {rm (iii)} if $Delta (mathfrak B(V))$ is an arithmetic root system and there does not exist any $m$-infinity element with $p_{uu} ot= 1$ for any $u in D(V)$, then $dim (mathfrak B(V) ) = infty$ if and only if there exists $V$, which is twisting equivalent to $V$, such that $ dim (mathfrak L^ - (V)) = infty.$ Furthermore we give an estimation of dimensions of Nichols Lie algebras and two examples of Lie algebras which do not have maximal solvable ideals.
We establish the relationship among Nichols algebras, Nichols braided Lie algebras and Nichols Lie algebras. We prove two results: (i) Nichols algebra $mathfrak B(V)$ is finite-dimensional if and only if Nichols braided Lie algebra $mathfrak L(V)$ is
It is shown that if $mathfrak B(V) $ is connected Nichols algebra of diagonal type with $dim V>1$, then $dim (mathfrak L^-(V)) = infty$ $($resp. $ dim (mathfrak L(V)) = infty $$)$ $($ resp. $ dim (mathfrak B(V)) = infty $$)$ if and only if $Delta(mat
Assume that $V$ is a braided vector space with diagonal type. It is shown that a monomial belongs to Nichols braided Lie algebra $mathfrak L(V)$ if and only if this monomial is connected. A basis of Nichols braided Lie algebra and dimension of Nichol
Let $V$ be a braided vector space of diagonal type. Let $mathfrak B(V)$, $mathfrak L^-(V)$ and $mathfrak L(V)$ be the Nichols algebra, Nichols Lie algebra and Nichols braided Lie algebra over $V$, respectively. We show that a monomial belongs to $mat
In this paper we give the relationship between the connected components of pure generalized Dynkin graphs and Nichols braided Lie algebras.