ﻻ يوجد ملخص باللغة العربية
Let $A$ be a commutative Banach algebra. Let $M$ be a complex manifold on $A$ (an $A$-manifold). Then, we define an $A$-holomorphic vector bundle $(wedge^kT^*)(M)$ on $M$. For an open set $U$ of $M$, $omega$ is said to be an $A$-holomorphic differential $k$-form on $U$, if $omega$ is an $A$-holomorphic section of $(wedge^kT^*)(M)$ on $U$. So, if the set of all $A$-holomorphic differential $k$-forms on $U$ is denoted by $Omega_{M}^k(U)$, then ${Omega_{M}^k(U)}_{U}$ is a sheaf of modules on the structure sheaf $O_M$ of the $A$-manifold $M$ and the cohomology group $H^l(M,Omega_{M}^k)$ with the coefficient sheaf ${Omega_{M}^k(U)}_{U}$ is an $O_M(M)$-module and therefore, in particular, an $A$-module. There is no new thing in our definition of a holomorphic differential form. However, this is necessary to get the cohomology group $H^l(M,Omega_{M}^k)$ as an $A$-module. Furthermore, we try to define the structure sheaf of a manifold that is locally a continuous family of $mathbb C$-manifolds (and also the one of an analytic family). Directing attention to a finite family of $mathbb C$-manifolds, we mentioned the possibility that Dolbeault theorem holds for a continuous sum of $mathbb C$-manifolds. Also, we state a few related problems. One of them is the following. Let $nin mathbb N$. Then, does there exist a $mathbb C^n$-manifold $N$ such that for any $mathbb C$-manifolds $M_1, M_2, cdots, M_{n-1}$ and $M_n$, $N$ can not be embedded in the direct product $M_1times M_2 times cdots times M_{n-1} times M_n$ as a $mathbb C^n$-manifold ? So, we propose something that is likely to be a candidate for such a $mathbb C^2$-manifold $N$.
An n-dimensional complex manifold is a manifold by biholomorphic mappings between open sets of the finite direct product of the complex number field. On the other hand, when A is a commutative Banach algebra, Lorch gave a definition that an A-valued
We study holomorphic GL(2) and SL(2) geometries on compact complex manifolds. We show that a compact Kahler manifold of complex even dimension higher than two admitting a holomorphic GL(2)-geometry is covered by a compact complex torus. We classify c
This is a survey paper dealing with holomorphic G-structures and holomorphic Cartan geometries on compact complex manifolds. Our emphasis is on the foliated case: holomorphic foliations with transverse (branched or generalized) holomorphic Cartan geometries.
We characterize manifolds which are locally conformally equivalent to either complex projective space or to its negative curvature dual in terms of their Weyl curvature tensor. As a byproduct of this investigation, we classify the conformally complex
We give a new CR invariant treatment of the bigraded Rumin complex and related cohomology groups via differential forms. We also prove related Hodge decomposition theorems. Among many applications, we give a sharp upper bound on the dimension of the