ﻻ يوجد ملخص باللغة العربية
Understanding how a learned black box works is of crucial interest for the future of Machine Learning. In this paper, we pioneer the question of the global interpretability of learned black box models that assign numerical values to symbolic sequential data. To tackle that task, we propose a spectral algorithm for the extraction of weighted automata (WA) from such black boxes. This algorithm does not require the access to a dataset or to the inner representation of the black box: the inferred model can be obtained solely by querying the black box, feeding it with inputs and analyzing its outputs. Experiments using Recurrent Neural Networks (RNN) trained on a wide collection of 48 synthetic datasets and 2 real datasets show that the obtained approximation is of great quality.
We study the sample complexity of private synthetic data generation over an unbounded sized class of statistical queries, and show that any class that is privately proper PAC learnable admits a private synthetic data generator (perhaps non-efficient)
Recommender systems are an essential part of any e-commerce platform. Recommendations are typically generated by aggregating large amounts of user data. A malicious actor may be motivated to sway the output of such recommender systems by injecting ma
Bin Packing problems have been widely studied because of their broad applications in different domains. Known as a set of NP-hard problems, they have different vari- ations and many heuristics have been proposed for obtaining approximate solutions. S
This paper is an attempt to bridge the gap between deep learning and grammatical inference. Indeed, it provides an algorithm to extract a (stochastic) formal language from any recurrent neural network trained for language modelling. In detail, the al
In this work, we present a novel method for combining predictions of object detection models: weighted boxes fusion. Our algorithm utilizes confidence scores of all proposed bounding boxes to constructs the averaged boxes. We tested method on several