ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling Long-Period Variables - I. A new grid of O-rich and C-rich pulsation models

128   0   0.0 ( 0 )
 نشر من قبل Michele Trabucchi
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michele Trabucchi




اسأل ChatGPT حول البحث

We present a new grid of non-adiabatic, linear pulsation models of Long-Period Variables (LPVs), including periods and growth rates for radial modes from the fundamental to the fourth overtone. The models span a wide range in mass, luminosity, metallicity, C/O ratio and helium abundance, effectively covering the whole thermally-pulsing asymptotic giant branch (TP-AGB) evolution, and representing a significant update with respect to previous works. The main improvement is the inclusion of detailed atomic and molecular opacities, consistent with the models chemical mixture, that makes the present set of models the first to systematically account for variability in C-stars. We examine periods and growth rates in the models, and find that, while the fundamental mode is affected by the structure of the envelope, overtones are less sensitive to the interior and largely determined by the global properties. In the models, the frequency of the overtone with the largest degree of excitation is found to scale with the acoustic cut-off frequency at the stellar surface, a behaviour similar to that observed for the frequency of maximum oscillation power for solar-like oscillations in less evolved red giants. This allows us to provide a simple analytic prescription to predict the most-likely dominant mode as a function of stellar parameters. Best-fit relations for periods are also provided. By applying results of pulsation models to evolutionary tracks, we present a general picture of the evolution of long-period variability during the TP-AGB, that we find consistent with observations. Models are made public through a dedicated web interface.

قيم البحث

اقرأ أيضاً

147 - Michele Trabucchi 2020
Long-period variability in luminous red giants has several promising applications, all of which require models able to accurately predict pulsation periods. Linear pulsation models have proven successful in reproducing the observed periods of overton e modes in evolved red giants, but they fail to accurately predict their fundamental mode periods. Here, we use a 1D hydrodynamic code to investigate the long-period variability of M-type asymptotic giant branch stars in the nonlinear regime. We examine the period and stability of low-order radial pulsation modes as a function of mass and radius, and find overtone mode periods in complete agreement with predictions from linear pulsation models. In contrast, nonlinear models predict an earlier onset of dominant fundamental mode pulsation, and shorter periods at large radii. Both features lead to a substantially better agreement with observations, that we verify against OGLE and Gaia data for the Magellanic Clouds. We provide simple analytic relations describing the nonlinear fundamental mode period-mass-radius relation. Differences with respect to linear predictions originate from the readjustment of the envelope structure induced by large-amplitude pulsation. We investigate the impact of turbulent viscosity on linear and nonlinear pulsation, and probe possible effects of varying metallicity and carbon abundance.
191 - Michele Trabucchi 2017
Period-luminosity (PL) sequences of long period variables (LPVs) are commonly interpreted as different pulsation modes, but there is disagreement on the modal assignment. Here, we re-examine the observed PL sequences in the Large Magellanic Cloud, in cluding the sequence of long secondary periods (LSPs), and their associated pulsation modes. Firstly, we theoretically model the sequences using linear, radial, non-adiabatic pulsation models and a population synthesis model of the LMC red giants. Then, we use a semi-empirical approach to assign modes to the pulsation sequences by exploiting observed multi-mode pulsators. As a result of the combined approaches, we consistently find that sequences B and C$^{prime}$ both correspond to first overtone pulsation, although there are some fundamental mode pulsators at low luminosities on both sequences. The masses of these fundamental mode pulsators are larger at a given luminosity than the mass of the first overtone pulsators. These two sequences B and C$^{prime}$ are separated by a small period interval in which large amplitude pulsation in a long secondary period (sequence D variability) occurs, meaning that the first overtone pulsation is not seen as the primary mode of pulsation. Observationally, this leads to the splitting of the first overtone pulsation sequence into the two observed sequences B and C$^{prime}$. Our two independent examinations also show that sequences A$^{prime}$, A and C correspond to third overtone, second overtone and fundamental mode pulsation, respectively.
High precision Kepler photometry is used to explore the details of AGB light curves. Since AGB variability has a typical time scale on order of a year we discuss at length the removal of long term trends and quarterly changes in Kepler data. Photomet ry for a small sample of nine SR AGB stars are examined using a 30 minute cadence over a period of 45 months. While undergoing long period variations of many magnitudes, the light curves are shown to be smooth at the millimagnitude level over much shorter time intervals. No flares or other rapid events were detected on the sub-day time scale. The shortest AGB period detected is on the order of 100 days. All the SR variables in our sample are shown to have multiple modes. This is always the first overtone typically combined with the fundamental. A second common characteristic of SR variables is shown to be the simultaneous excitation of multiple closely separated periods for the same overtone mode. Approximately half the sample had a much longer variation in the light curve, likely a long secondary period. The light curves were all well represented by a combination of sinusoids. However, the properties of the sinusoids are time variable with irregular variations present at low level. No non-radial pulsations were detected. It is argued that the long secondary period variation seen in many SR variables is intrinsic to the star and linked to multiple mode pulsation.
103 - O. De Marco 2001
The hydrogen-deficient carbon-rich [WCL] type central star HD167362 and its oxygen-rich planetary nebula (PN) SwSt~1 are investigated. The nebular chemistry might indicate a recent origin for the carbon-rich stellar spectrum. Its stellar and nebular properties might therefore provide further understanding of the origin of the [WCL] central star class. The UV-IR stellar spectra are modelled with state of the codes and show ~40kK central star with a wind and a C/O~3, indicative of efficient third dredge-up. The synthetic stellar flux distribution is used to model the high density, compact PN, which has a solar C/O ratio, is still enshrouded by 1200K and 230K dust shells and, reported here for the first time, in molecular hydrogen. Although it appears that the change in C/O ratio has been recent, the published spectroscopy since 1895 has been re-examined and no clear spectral change is seen. If an event occurred that has turned it into a hydrogen-deficient central star, it did not happen in the last 100 years.
243 - Avon Huxor , Eva Grebel 2015
We assemble 121 spectroscopically-confirmed halo carbon stars, drawn from the literature, exhibiting measurable variability in the Catalina Surveys. We present their periods and amplitudes, which are used to estimate distances from period-luminosity relationships. The location of the carbon stars - and their velocities when available - allow us to trace the streams of the Sagittarius (Sgr) dwarf spheroidal galaxy. These are compared to a canonical numerical simulation of the accretion of Sgr. We find that the data match this model well for heliocentric distances of 15-50 kpc, except for a virtual lack of carbon stars in the trailing arm just north of the Galactic Plane, and there is only tentative evidence of the leading arm south of the Plane. The majority of the sample can be attributed to the Sgr accretion. We also find groups of carbon stars which are not part of Sgr; most of which are associated with known halo substructures. A few have no obvious attribution and may indicate new substructure. We find evidence that there may be a structure behind the Sgr leading stream apocentre, at ~100 kpc, and a more distant extension to the Pisces Overdensity also at ~100 kpc. We study a further 75 carbon stars for which no good period data could be obtained, and for which NIR magnitudes and colours are used to estimate distances. These data add support for the features found at distances beyond 100 kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا